

I-Yang Lee

For the GRETA Steering Committee

R&D Review November 13, 2002, DOE NP

GRETA –

Gamma Ray Energy Tracking Array

R&D status and plan Proof of principle 3-cluster modules R&D needs

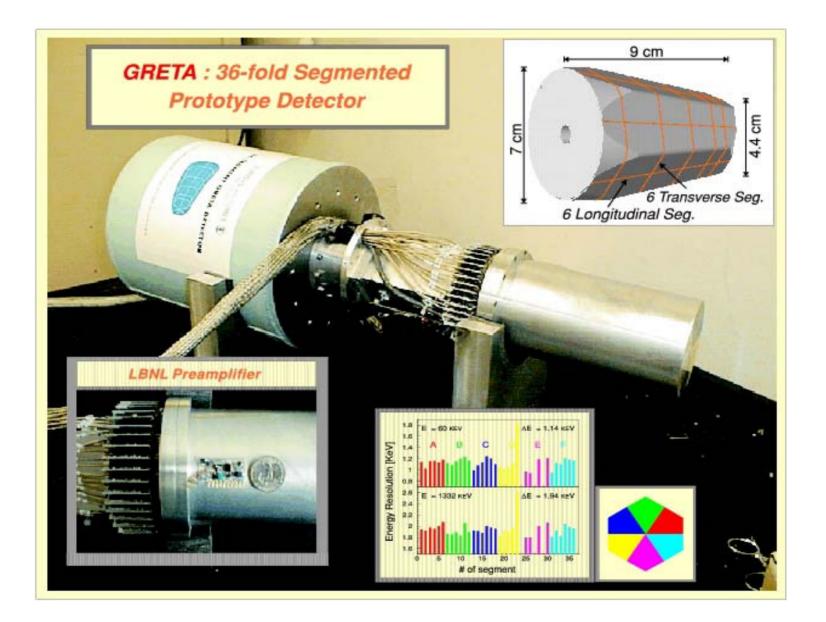
- K&D needs
- Cost reduction and staging

Proof of principle

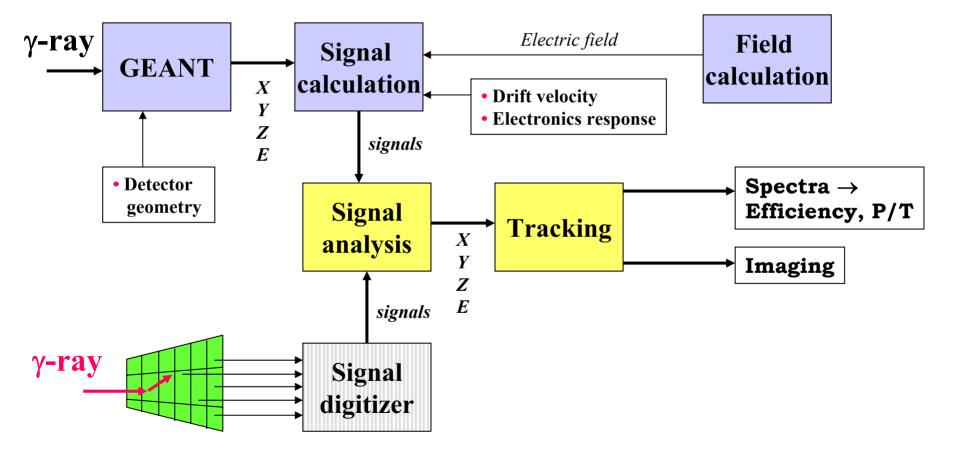
No show stoppers

Segmented prototype detector

- Energy resolution: 1.2 keV at 60 keV and 1.9 keV at 1332 keV
- Total integrated noise: < 5 keV (bandwidth 35 MHz)</p>
- 3-D position sensitivity: < 1 mm at 374 keV (single interaction)</p>


Signal analysis

- Adaptive grid search: 1-2 mm
- Least square: 1-2 mm
- Genetic algorithm: 2 mm
- Wavelet transformation: 5-6 mm


Tracking algorithms

- Compton tracking (150 keV < E_q < 5 MeV) : eff = 50%, for m= 25.
- Pair tracking ($E_g > 5 \text{ MeV}$) : eff = 50%
- M. A. Deleplanque et al., Nucl. Instrum. Methods Phys. Res. A430, 292(1999).
- G. J. Schmid et al., Nucl. Instrum. Methods Phys. Res. A430, 69 (1999).
- K. Vetter et al., Nucl. Instrum. Methods Phys. Res. A452, 105 (2000).
- K. Vetter et al., Nucl. Instrum. Methods Phys. Res. A452, 223 (2000).

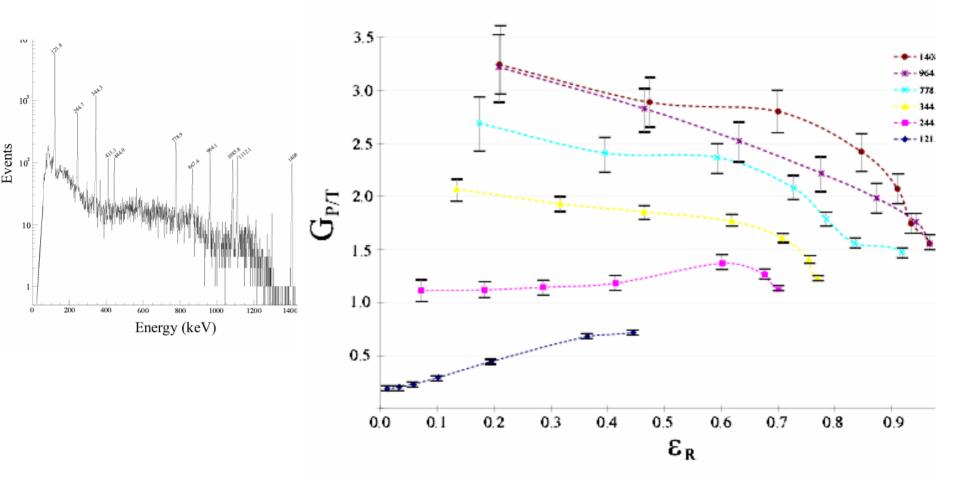
Prototype detector II at LBNL

Full analysis of simulated and experimental data

Full analysis

E_{γ} =0.662 MeV, source distance= 12 cm

- Signal analysis (least square method)
 - up to 4 segments and 2 interactions per segment (98% of all events)
- For single interaction per segment
 - position resolution <1 mm, efficiency=85%
- For two interactions per segment
 - position resolution =1 mm, efficiency=70%
 - minimum separation =2 mm
 - We have Studied
 - Simulation with/without tracking
 - Measurements with/without tracking
 - Compared Simulation with Data


Compare simulation with measurements

E_y=0.662 MeV

Simulation **Measurements** Without Tracking Without Tracking P/T = 0.16P/T = 0.16With Tracking With Tracking P/T = 0.38P/T = 0.31400 Eff = 0.67Eff = 0.62Counts Counts Counts Counts 600 Energy (keV) 500 600 Energy (keV)

Austin Kuhn, PhD Thesis, UC Berkeley, 2002.

¹⁵²Eu full analysis Gain in peak/total vs. efficiency

Austin Kuhn, PhD Thesis, UC Berkeley, 2002.

GRETA R/D plan

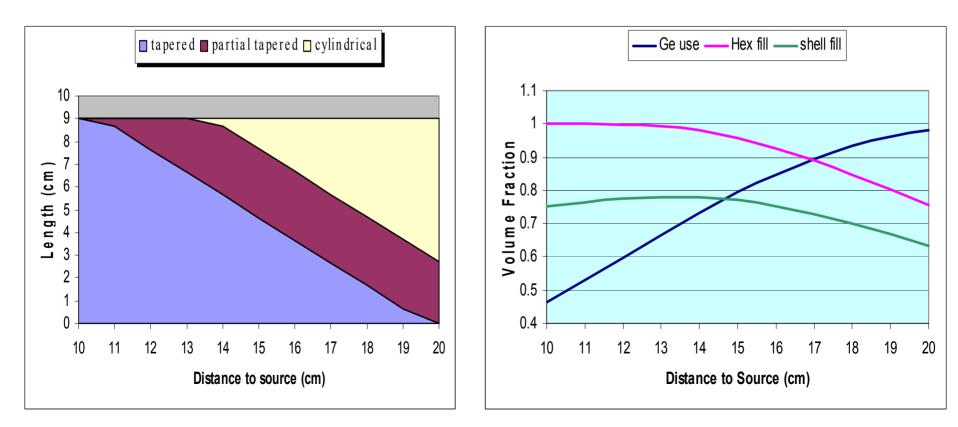
Goal: experiments with cluster modules

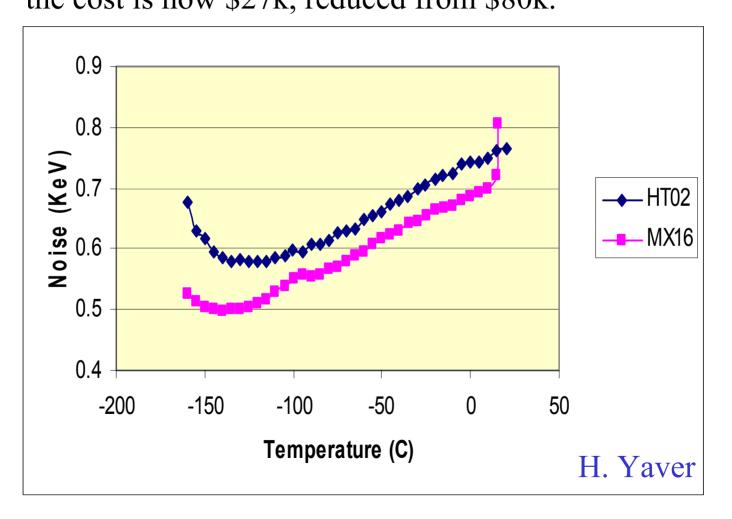
Measurements with prototype II
Obtain three-crystal detector modules
Develop digital electronics
Improve signal analysis algorithm
Improve tracking algorithm


3-crystal modules


- Cold FET for the 1st module
- Test 1st module
- Test setup, mechanical support
- Design 2nd & 3rd module
- Purchase 2nd & 3rd module
- Test 2nd & 3rd module

Three-crystal detector module


- Tapered regular hexagon shape.
- Dia= 8 cm, L=9 cm, 36 segments.
- Close packing of crystals with gap = 3.5 mm.
- On order.
- Expected delivery in one year.


Prototype Detector III Shape of tapered crystals

Diameter = 8 cm Length = 9 cm Flat taper angle = 10° Crystal/can = 3 Small gap = 0.35 cm Large gap = 1.0 cm

Cold FET

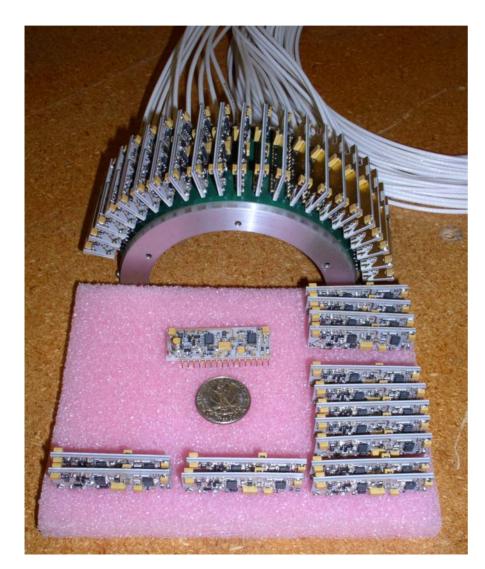
At -120° C, noise is reduced to 0.7 of that at room temp.
In collaboration with AGATA, the cost is now \$27k, reduced from \$80k.

Electronics & Data Acquisition

Preamplifier

Design Fabrication

Signal digitizer


8-ch module, test debug

8-ch module, production

40-channel module, design

Data acquisition system – VME based

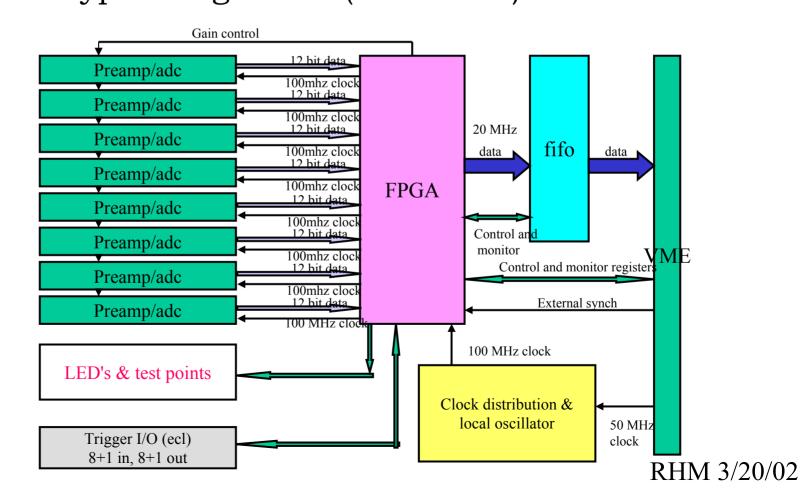
Preamplifiers for 3-cluster modules

Miniature 1.85" x 0.6" x 0.3"

Low noise, high band width 0.40 keV at 4 µs 0.47 keV at 0.5µs

Preamps designed by Harold Yaver (LBNL)

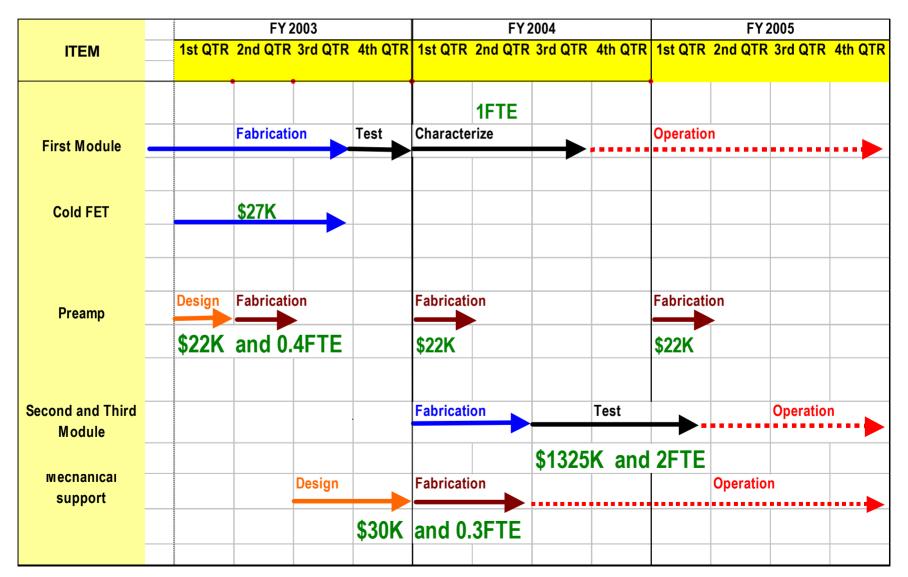
Signal Digitizer


Prototype Specifications determined at ANL workshop Electronic working group chaired by Dave Radford

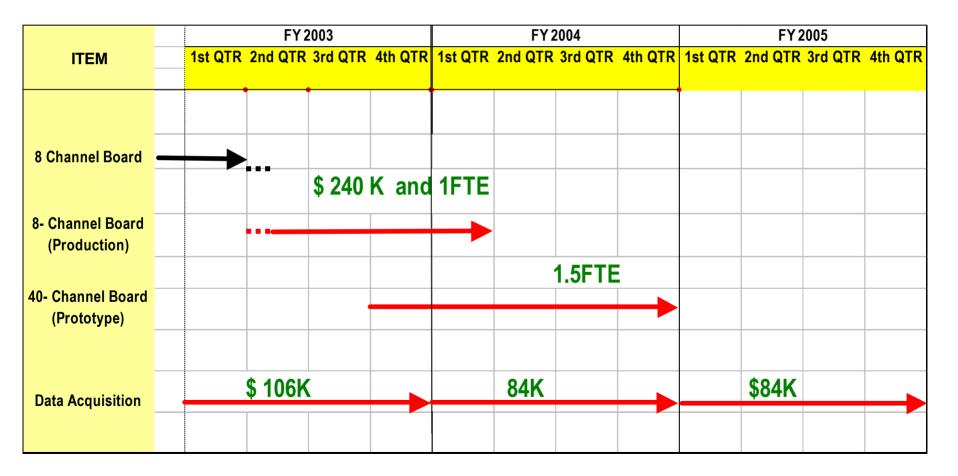
- Variable gain control
- Digitization at 100MHz, 12 bits
- Complex triggering (internal, external, validation)
- Data processing
 - •Digital Leading Edge discriminator with programmable parameters
 - •Digital Constant Fraction with programmable parameters
 - •Digital Trapezoidal Shaping with programmable parameters
 - •Raw data sample storage of charge collection
- VME readout

Schematic diagram

8 channel 6U VME boardPrototype being tested (Nov. 2002)



Software developments


- Prototype II, data analysis In-beam measurements Imaging
- Signal analysis, minimization
- Signal shape parameterization
- Tracking

R&D timeline

Electronics & Data Acquisition R&D timeline

Software developments R&D timeline

			2003				2004				2005	
ITEM	1st QTR 2	2nd QTR	3rd QTR	4th QTR	1st QTR	2nd QTR	3rd QTR	4th QTR	1st QTR	2nd QTR	3rd QTR	4th QTR
										1	1	
Applyze data from CRETA		1.5FTE										
Analyze data from GRETA prototype (proof-of-												
functionality)		2FTE							Im	plementat	ion	
Develop minimization procedures												••••
		1FTE										
Signal shape parameterization												
		3.5FTE							Im	plementat	ion	
Tracking											• • • • • • •	••••

GRETA R&D costs (FY03-05)

Item	Purchase	Manpower
	(\$k)	(FTE-yr)
Three 3-crystal module	es 1382	3.3
Electronics	306	2.9
Data acquisition	274	
Software		12.0
Total	1962	18.2
	(@20	0k/FTE-yr)=3640
Grand Total	\$5602	2k

GRETA R&D cost profile

Pur	chase	Manpower
	(\$k)	(FTE-yr)
FY03	265	7.7
FY04	981	5.0
FY05	716	5.5

Manpower for FY03

6.2 FTE available vs. 7.7 FTE needed

LBNL – In-beam test, desig	gn irregular detecto	or module,	4.0 FTE
Test 8-ch digitizer modul	e, design preamp,	software developmen	t.
Martina Descovich	I-Yang Lee	Augusto Macchivaell	li
Paul Fallon	Mario Cromaz		
Harold Yaver (funded by LI	DRD)	Vicent Riot (funded b	by LDRD)
ANL – Software developm	nent		0.5 FTE
Kim Lister	Mike Carpenter		
ORNL – Programming FPC	A in signal digitiz	zer	0.5 FTE
Dave Radford	Steve Pauly (funded		
Yale – Software developr	nent		0.2 FTE
Con Beausang	Postdoc (funded by	NNSA)	
MSU – Software developr	nent		1.0 FTE
Thomas Glasmacher	Krzysztof Starosta	Will Mueller	

GRETA Cost Reduction Analysis

- Reduce the cost of Ge detector -\$5.5 M
- Future cost reduction of computers \$0.7M
- Subcontract design and construction \$0.9M
- Redirect efforts \$4.8M

Total Cost = \$35M

Includes overhead, escalation (17%), and contingency (20%)

Price of Segmented Ge Detectors \$5.5 M savings

Туре	Shape	Dia. (cm)	No. Seg	Xtal/ cryostat	Unit Produced	Year	Price \$k/Xtal
Gammasphere	Cylinder	7	2	1	65	1995	55
MSU	Cylinder	7	32	1	18	2001	75
Exogam	square	5	4	4	12	2001	38
Clover	square	5	2	4	30	2002	25
Miniball	Tap.Hex.	7	12	3	6	2002	75
GRETA II	Tap.Hex.	7	36	1	1	1998	175
GRETA cluster	Tapered hexagon	8	36	3	1	2002	250

Manufacture estimated production price = 150k /Xtal We think it could be obtained at price = 100k/Xtal

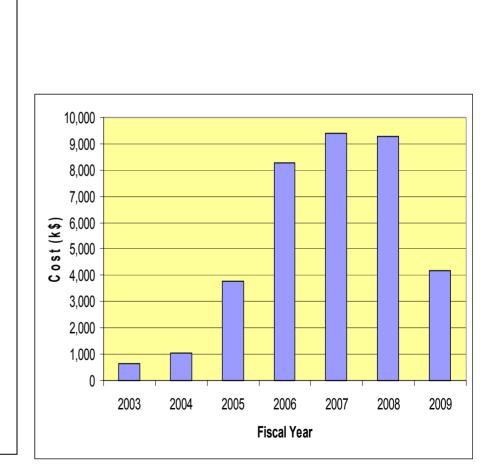
Cost Reduction of Computers \$0.7M savings

 Computer cost reduces by about a factor of 2 every 2 years. Our original estimate has not taken this factor into consideration. Assuming an average purchasing time period of 4 years, we could reduce the computer cost by a factor of 4,

Subcontract design and construction \$0.9M savings

• Assuming that the university will design and construct the mechanical structure, target chamber and the liquid-nitrogen system, we could save on the lower overhead rate on 9 FTE-year, for a total saving of \$0.9M.

Redirect efforts


\$4.8M savings

• This assumes that the efforts for project management (18 FTE-year), and half of the effort for computer software (6 FTE-year) could be redirected from existing efforts. This will save \$4.8M

GRETA Total Cost and Cost Profile

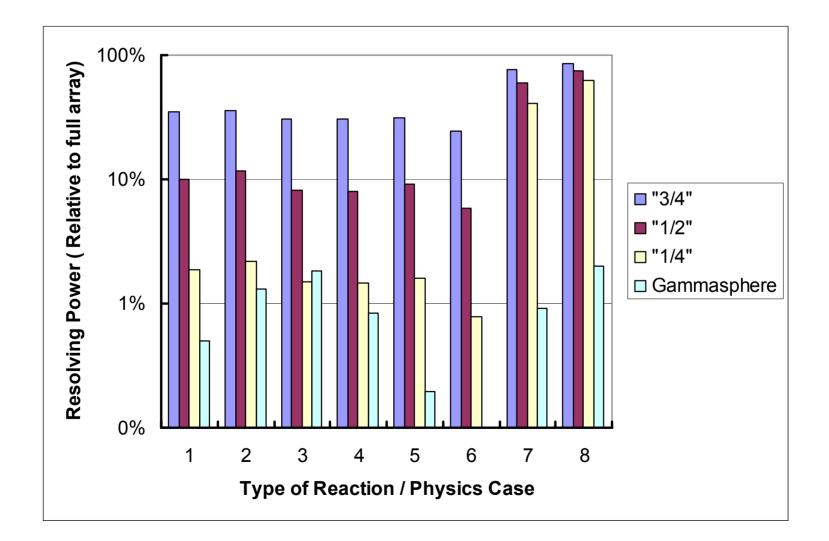
FY02 Dollar, with overhead, no contingency, no escalation

	Item Pu	rchase	Effort	
		(M\$)	(FTE-yr)	
•	Mechanical	0.9	5	
•	LN	0.5	4	
•	Detector	18.0	7	
•	Electronics	3.4	10	
•	Computer	1.1	13	
•	Installation	0.0	6	
•	Management	0.0	15	
•	Safety	0.0	3	
			63	
Τ	TOTAL (M\$)	23.9	12.6 36.5	

Cost Comparison

Items	Cost (\$M)			
	Old	New		
Purchasing	24	18		
Manpower	13	7		
Escalation @17%	6	4		
Contingency @20%	9	6		
Total	52	35		

GRETA Staged cost

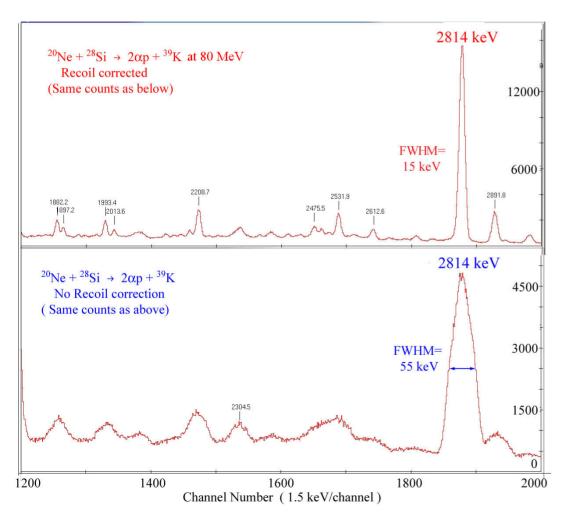

total cost \$35M

Solid angle	Angular range	Cost
1/4	0° - 60°	\$13.54M
$\frac{1}{2}$	0° - 90°	+\$ 7.11M
3/4	0° - 120°	+\$ 7.29M
Full	0° - 180°	+\$ 7.41M

GRETA Staged Performance

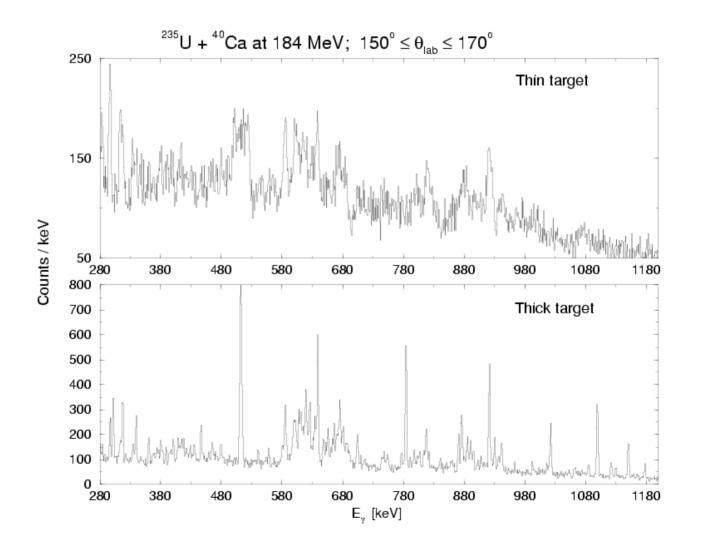
Type of Reaction	<e<sub>γ> (MeV)</e<sub>	v/c	Μ _γ	Resolving Power	Staging Relative Factor (Relative to Gammasphere)		
				$\Delta x = 2 \text{ mm}$ $\Omega = 80\%$	1/4	1/2	3/4
1) Stopped 2)	5.0 1.5	0.0 0.0	4 4	2.1 x 10 ⁷ 4.4 x 10 ⁷	.02 4 .02 1.5	.10 20 .11 9	.35 70 .34 28
3) High-spin Normal Kinematics	1.0	0.04	20	2.4 x 10 ⁶	.015 0.8	.08 4.5	.31 17
4) High-spin Inverse Kinematics	1.0	0.07	20	2.2 x 10 ⁶	015 1.8	.08 10	.30 36
5) Coulex/transfer	1.5	0.1	15	3.7 x 10 ⁶	.015 8	.09 47	.31 160
6) Fragmentation	1.5	0.5	6	5.9 x 10 ⁶	.008 100	.06 730	.25 3080
7) In beam Coulex 8)	5.0 1.5	0.5 0.5	2 2	2.7 X 10 ³ 4.1 x 10 ³	.41 45 .62 30	.60 66 .75 38	.77 85 .85 43

GRETA Staged Performance



Important Performance parameters of GRETA early stage operation

- Better position Resolution 2 mm vs. 20 mm
 High recoil velocity experiments
- Higher efficiency for high energy gamma rays- 0.2 vs. 0.05 at 15 MeV
 - Giant resonances studies
- Compactness ¼ GRETA is comparable or better than Gammasphere
 - Use with auxiliary detectors, BGS, new CHICO, etc.


Nuclear Structure Studies

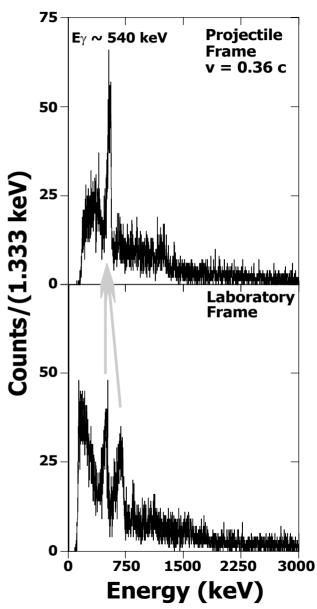
•Energy resolution in GS before and after recoil correction with the µBall.

- The remaining resolution of FWHM=15 keV is mainly due to the finite size of the GS Ge detectors.
- With the increased granularity of GRETA, for SD bands in ⁴⁰Ca this will be reduced to ~ 5 keV at 2933 keV (thin target contribution remains).
- More detailed spectroscopy and accurate lifetimes can be obtained on the SD Bands in nuclei like ³⁶Ar and ⁴⁰Ca and SD band termination can be observed.

Coulomb Excitation

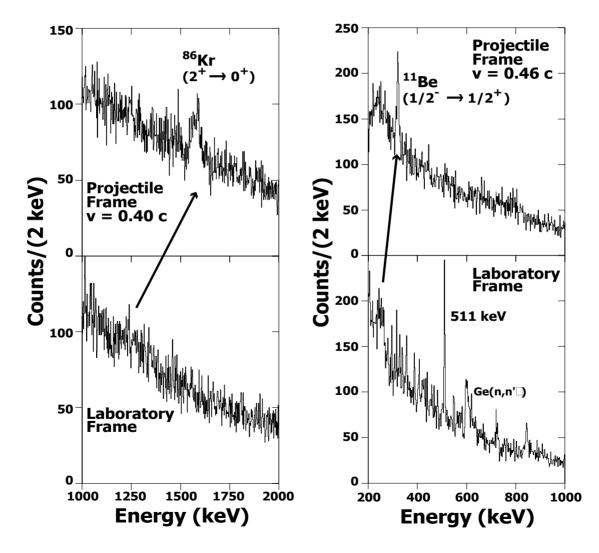
Nuclear structure studies with fast beams

- Address two of the three "crucial questions" in the chapter "Atomic Nuclei: Structure and Stability" of the 2002 Long-Range Plan for Nuclear Science.
 - "How do weak binding and extreme proton-to-neutron asymmetries affect nuclear properties? ..."
 - "How do the properties of nuclei evolve with changes in proton and neutron number, excitation energy and angular momentum? ..."
- Fast beams and thick secondary targets extend the scientific reach of any facility by factor of 100-1000
- Build on an emerging field less than 10 years old
- Allow high-precision measurements (1 in 10⁶) : keV resolution/ GeV beam energy
- Stages of GRETA are very efficient due to forward focusing of γray flux


Nuclear structure studies with fast exotic beams

GRETA	Fraction of γ-rays detected at 100 MeV/A (NSCL)	Fraction of γ-rays detected at 250 MeV/A (RIA)
Stage 1 1/4	46%	59%
Stage 2 1/2	72%	81%
Stage 3 3/4	89%	93%
Stage 4 full	100%	100%

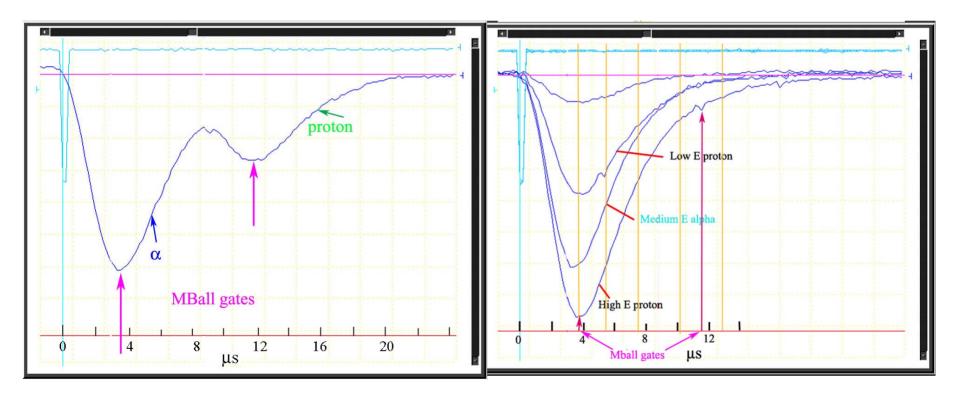
1n knockout with SeGA ⁴⁶Ar(Be, ⁴⁵Ar γ)


140 MeV/nucleon ⁴⁰Ar from CCF \rightarrow 90 MeV/nucleon ⁴⁶Ar

Detecting g-rays emitted from GeV beams with keV resolution: first tests

⁸⁶Kr+¹⁹⁷Au at 85 MeV/nucleon

¹¹Be+¹⁹⁷Au at 109 MeV/A, $\Delta E_{\gamma}/E_{\gamma} = 3\%$



Microball improvements

Digital signal processingIncrease granularity

Unresolved pileup pulses in the Microball (CsI)

5-time point digital sampling to recover the pileup or increase rate by ~ 2

Conclusions

- Proof of principle is achieved
- 3-Cluster modules is the important next step
- Cost saving possibilities are being discussed
- Staged approached has a science base