

DOE Germantown 13th Nov 2002 C.J. Lister Argonne National Laboratory

Strategy **Detectors Status Current R&D Projects Future Procurement Plan Current Effort Level** Plan for FY2003 Longer Term Plans **Resources** Needed

<u>Strategic Approach to γ-Ray Tracking using</u> <u>Planar HpGeDSSD's</u>

4-Pronged Approach:

1) Develop Planar Germanium Detector Technology

2) Develop Digital Tracking Technologies

- 3) Demonstrate Scientific Usefulness of Devices for many Applications
 - 4) Develop an Efficient Focal Plane Array for the FMA, The X-Array

Note: We co-ordinate our R&D with the detector development group at the Naval Research Laboratory, (Dr. R. Kroeger, Dr. B. Phlips) who pioneered work with HpGeDSSDs for space science and national security.

Planar Germanium Detector Status

Manufactured by Ortec, Oak Ridge, TN

"Mark 3"

Traditional p-type bulk material with Boron/ Lithium Construction..... a "LEPS" 92 x 92 x 20 mm Wafers 16 x 16 Orthogonal 5mm strips 3 mm guard ring All Warm FET preamp Bulky Test Cryostat By far the best to date: 1.5 keV FWHM (Li) 16 strips

2.1 KeV FWHM (LI)

16 strips 15 strips

<u>"Mark 4" (December 2002)</u>

All Cold FET preamps Guard ring-less ?? (or 14 x 14 fallback) Same Mechanical Package as "Mark 3"

Current R&D Projects

Digital Pulse Processing (J. Amann) Analysis of Resolution, "Addback" and "Event-loss" (S. Freeman) Monte Carlo Simulations (E.F. Moore) Two Detector (64-Channel) Analog Data. Acq. (K. Teh) VME Capability for Analog and Digital System. (K. Teh) **Applications** Doppler Correction "Inbeam" (S.Fischer) (N. Hammond) Polarization of γ -rays from α -decay sources SBIR project "Hunting for Fossils on Mars" (D. Nisius) ANL Technology Division "Compton Camera" (F. Kondev) The "X-Array", a FMA Focal Plane Detector (E.F. Moore / Teng Lek Khoo)

HpGeDSSD Position Sensitivity Tests

J. Amann, DePaul University

Ŷ

⁶⁰Co Interaction Real & Induced charge

Collimated source tests:

Position across single strip

Determined from difference in size of induced signal in adjacent strips

Testing HpGeDSSD Resolution and Efficiency

Dr. S.J. Freeman (U. of Manchester UK / ANL sabbatical visitor)

Matching expectation and reality reveals a great deal about how the detector works.

Horizontal - Vertical Energy (keV)

- * Resolution, and gain-shifts, measures capacitive coupling.
- * Front-Back charge consistency quantifies collection loss
- * Surface-Maps quantify edge-losses

* Absolute Efficiency becomes a matter of definition

- Fast Moving Ions (v/c=0.08)
- Pixel-by-pixel correction
- Ten-fold improvement in FWHM

Counts

Mark 3 detector has better intrinsic energy resolution and better pixel definition: Test in August 2002

<u>"Mark 3" HpGeDSSD In-beam Experiment at ATLAS</u> Test of Doppler-shift correction capability (October 2002)

Polarization Experiment

U. Liverpool / ANL Collaboration

HpGeDSSD Imaging Test

Collimated 15 mCi ¹⁰⁹Cd source

Quartz sample with 1 mm drilled holes

- •Paraffin
- •graphite

Information on position from strip hits only

P.I. Dr. D. Nisius, BioImaging Research Corp.

1) Streamlined Mechanical Envelope

Construct a practical compact cryostat for Array deployment Thin-Contact Technology (First Unit ~ \$125K, four for \$500K)

2) "Full Detector Stack"

To Construct a full tracking unit, with 4 layers of germanium

A) Phase 1 would be a test cryostat loaded with 2 wafers
B) Phase 2 would reload cryostat with 2 more wafers
(Total Estimated Prototype ~ \$500K)

X-Array Physics Applications

- $\alpha \gamma$ Fine structure spectroscopy
 - p-γ Fine structure spectroscopy
 - $\beta \gamma$ Decay studies
- e-γ Conversion electron spectroscopy

Isomer Studies

Low Energy Coulomb Excitation

Design Optimization For:

High Efficiency, Good Energy Resolution, High Count rate Capability, Considerable Segmentation, Mechanical Flexibility, Compatibility with existing silicon arrays and is ideal for RIA in the future.

08/16/01 10:50:37

efficiency

origin:

garbo1.i: MCNP calculation of

probid = 08/16/01 10:46:14

(0.00, 0.00, -0.20) extent = (14.00, 14.00)

(1.000000, 0.000000, 0.000000)

X-Array MCNP Geometry

Vertical cross section

MCNP

Horizontal cross section

MCNP Results

Photopeak efficiency

Peak to Total (E > 30 keV)

November 2002

"Mark 3" Planar Module delivered 18th February 2002
"Mark 4" expected December 2002
Detailed Design of Focal Plane Vacuum Envelope
Simulations for different back detector sizes / geometries
Extensive Discussions with detector manufacturers concerning size and segmentation vs. cost

November 2002

Item	\$K (X-Array)	\$(Tracking)
5 Big "Back" detectors	5 x 125	
4 Streamlined Planars (First counted in GARBO R&D)		4 x 125
Clover high resolution Amps, ADC's, TDCs and logic (25channels)	70	
Planar high resolution Amps, ADC's, TDCs and logic (160channels)		170
High Power NiM, CAMAC and VME Crates, High Voltage	50	
Frame	40	
Chamber	30	
LN2 System	30	
Laboratory Tax (11%)	93	73
TOTAL	\$938K	\$744K

Current (CY2002) Effort Level

NAME	Institution	Effort (CY2002)
C.J. Lister M. P. Carpenter N. Hammond RVF Janssens E.F. Moore T.L. Khoo K. Teh	ANL (Physics)	(1.75 FTE)
F. Kondev	ANL (Technology)	(0.1 FTE)
Prof. S. Freeman	U. Manchester U.K.	(0.5 FTE)
Prof. S. Fischer	DePaul University	(0.25 FTE)
Dr D. Nisius	BioImaging Research I	nc. (0.25 FTE)

 $\sim 3.0 \text{ FTE}$

- 1) Test and Evaluate "Mark 4"
- 2) Build Compton Camera.
- 3) Build PET scanner and start Medical Collaboration with U. Chicago Medical Center Radiology Group (Prof. R. Beck).
- 4) Procure "Mark 5" Streamlined Detector with thin contact technology.
- 5) Design / Specification of Detector Stack
- 6) Polarization Physics at ANL
- 7) "Fast Ion" physics of odd-A nuclei at MSU
- 8) Procurement of 2 large backing detectors; "2-sided" box evaluation of X-Array performance.

Longer Term Plans (2003-5)

- 1) Procure and evaluate a HpGeDSSD "4 stack"
- 2) Develop Signal Processing and software for Tracking
- 3) Build full X-Array by 2005

Resources Needed for Plan (2003-5)

- Planar Detectors and Tracking Technologies \$1466K
 (Inc. Wafers for X-Array and "4-Stack")
- 2) X-Array Infrastructure and Backing Detectors \$938K

60Co "Deep" Interaction

60Co "Shallow" Interaction

137Cs "Shallow, 2 Interactions" Interaction

57Co "Deep, Center" Interaction

Post Meeting Budget Revision

Revised Budget Numbers November 14th 2002 following DOE visit.

YEAR	"TRACKING R&D"	"X-ARRAY"	
	(GRTCC Report)	(FMA Specific)	(Tracking Related*)
2003	150 ^a	375	
2004	300 ^b	370	335
2005	200 ^b	100	335
Tax (11%)	72	93	74
	\$722K	\$938K	\$744K

* The "tracking related" component of the X-Array is the inner box of planars and their associated electronics. These detectors form a key component of the X-Array, as they provide the X-ray and polarization sensitivity which makes the instrument unique. The detectors can also be used separately from the array for use as a PET scanner, Compton camera, or in many other "Tracking" applications.

a) This component is \$125K for a "streamlined, thin contact HpGeDSSD" plus \$25K for digital pulse processing boards for our data acquisition system.

b) Estimated cost of a "4-Stack" of planars in a single cryostat.