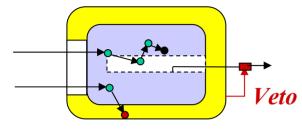

GRETA Readiness

I-Yang Lee

For the GRETA Steering Committee

NSAC Subcommittee on Categorizing Facilities February 15, 2003, Rutgers University

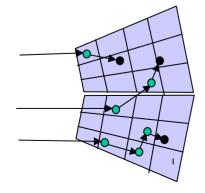

Development of the U.S. gamma-ray tracking effort

- 1994 Conceptual design study
- 1995 Duke Town meeting (1996 LRP) first discussion
- 1997 First prototype received and tested
- 1998 Workshop on GRETA physics (LBNL)
- 1998 Workshop on experimental equipment for RIA (LBNL)
- 1999 GRETA advisory committee formed
- 1999 Second prototype received and tested
- 2000 Workshop on GRETA physics (MSU)
- 2000 Proposal for a GRETA module cluster submitted and reviewed, funded 2002
- 2001 National Steering Committee formed
- 2001 Santa Fe meeting (2002 LRP) presentation and discussion
- 2001 Workshop on Digital Electronics in Nuclear Physics (ANL)
- 2001 Workshop on Gamma-ray tracking detectors (Lowell)

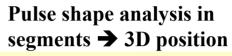

• 2002 Gamma Ray Tracking Coordination Committee review -National plan for development of Gamma-ray tracking detectors in nuclear science

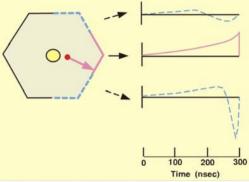
Gamma-ray Tracking Concepts

Compton Suppressed Ge

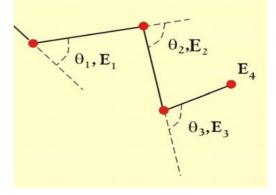


N_{det} = 100 Peak efficiency = 0.1 Efficiency limited




N_{det} = 1000 (summing) Peak efficiency = 0.6 Too many detectors

Gamma Ray Tracking



 $N_{det} = 100$ Peak efficiency = 0.6 Segmentation

Tracking of photon interaction points → energy, position

GRETA R&D Efforts

Integrated Efforts Since $1994 \cong 5 M

		Effort (FTE-yr)
•	Detector	4
•	Preamp	1
•	Signal analysis	4
•	Tracking	3
•	Signal digitizer	4
•	Data acquisition	1
	Total	17

- Prototype I (12 seg.)
- Prototype II (36 seg.)
- Module cluster (3 x 36 seg.)
- Electronics Total

Hardware cost

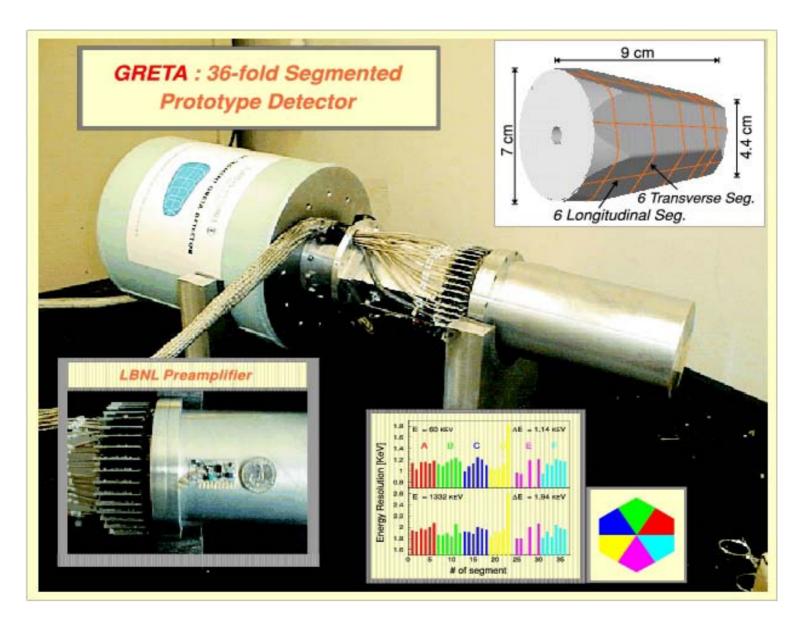
- \$ 172k
- \$ 100k (modify prototype I)
- **\$** 781k
- \$ 500 k
- **\$1,553** k

R&D Accomplishments

Proof of principle: No show stoppers

Segmented detectors

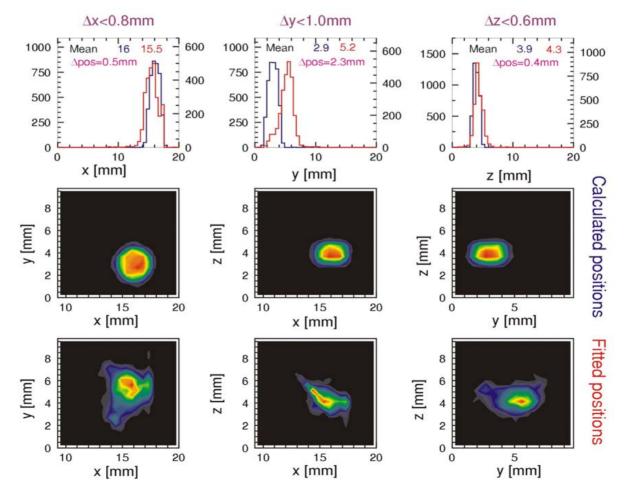
- Energy resolution: 1.2 keV at 60 keV and 1.9 keV at 1332 keV
- Total integrated noise: < 5 keV (bandwidth 35 MHz)</p>
- 3-D position sensitivity: < 1 mm at 374 keV (single interaction)</p>

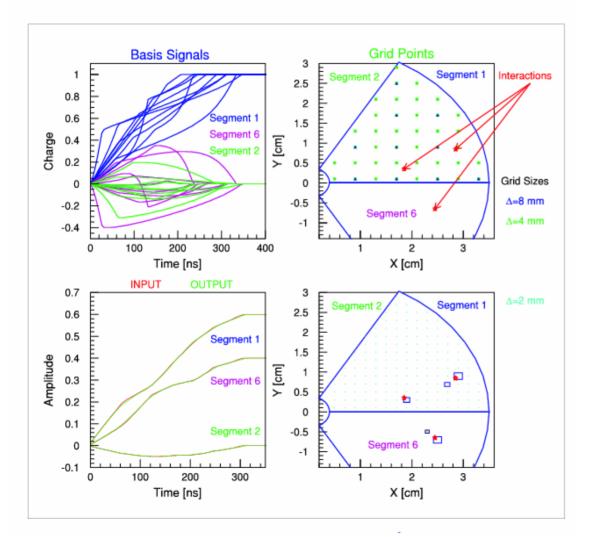

Signal analysis

- Adaptive grid search: 1-2 mm
- Least square: 1-2 mm
- Genetic algorithm: 2 mm
- Wavelet transformation: 5-6 mm

Tracking algorithms

- Compton tracking (150 keV < E_{γ} < 5 MeV) : eff = 50%, for m= 25.
- Pair tracking (E_{γ} > 5 MeV) : eff = 50%
- M. A. Deleplanque et al., Nucl. Instrum. Methods Phys. Res. A430, 292(1999).
- G. J. Schmid et al., Nucl. Instrum. Methods Phys. Res. A430, 69 (1999).
- K. Vetter et al., Nucl. Instrum. Methods Phys. Res. A452, 105 (2000).
- K. Vetter et al., Nucl. Instrum. Methods Phys. Res. A452, 223 (2000).

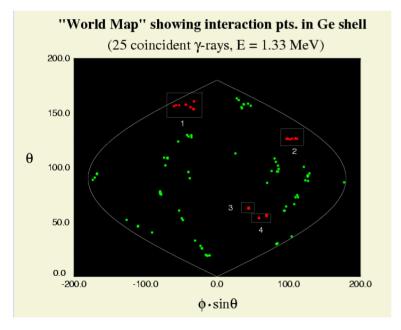

Prototype detector II at LBNL


Position determination for a single interaction

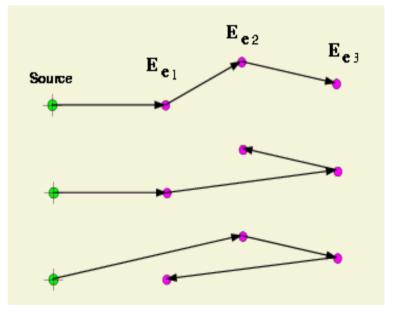
K. Vetter et al, Nucl. Instr. Meth. A 452 (2000) 223

Position resolution

Signal decomposition of multiple interactions in one segment


Calculate signal in each segment for interactions on a grid
base signals

Decompose the composite signal into a linear combination of base signals


Interpolate to improve position resolution

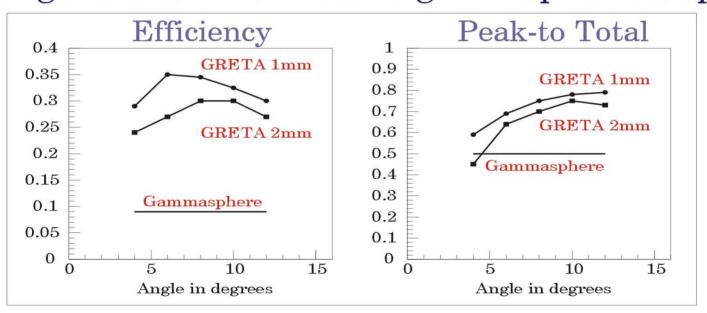
Tracking of Compton Scattering

First step – cluster finding

Second step – Identify sequence satisfying Compton condition

Assume: g-ray from the source $E_{\gamma} = E_{e1} + E_{e2} + E_{e3}$

Sequence with best fit → correct scattering sequence → rejects Compton and wrong direction

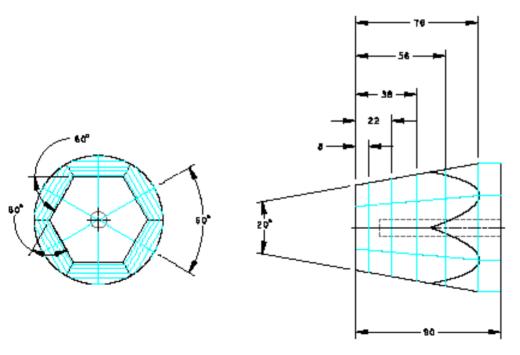

Tracking Results Compton Tracking

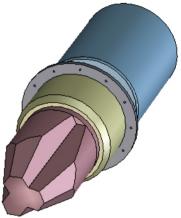
G.J. Schmid et al, Nucl. Instr. Meth A 430 (1999) 69

 $0.1 \text{ MeV} \le E_{\gamma} \le 5 \text{ MeV}$: Compton Effect dominant

Example: 25 gamma rays of 1.33 MeV

Cluster generation - Tracking - Split/Add/Split-add


Tracking efficiency about 50%


GRETA R/D plan (FY03 – FY05)

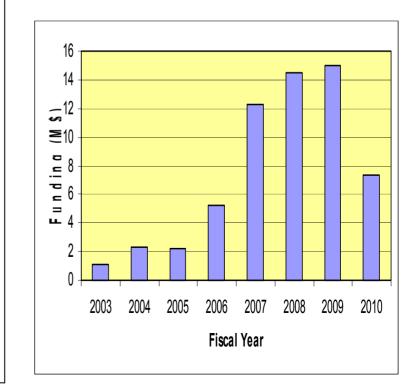
- Measurements with prototype II
- Obtain three-crystal detector modules
- Develop digital electronics
- Improve signal analysis algorithm
- Improve tracking algorithm

Three-crystal detector module Building Block of GRETA

- Tapered regular hexagon shape.
- DIA= 8 cm, L= 9 cm, 36 segments.
- Close packing of crystals with gap= 3.5 mm.
- On order and expecting delivery in Oct. 2003.
- Cost = \$750 k (\$450k for 40 units)

Proposed GRETA Schedule

Preliminary 1/03


Fiscal year	2003	2004	2005	2006	2007	2008	2009	2010
R/D 3 amotal madula	#1	#2,	3					
3-crystal module Signal digitizer electronics								
Data acquisition								
Signal processing software								
CD0 (Mission need)								
Conceptual design study								
CD1 (Baseline cost range)								
Preliminary design Long lead time purchasing								
CD2 (Performance baseline)								
Final design								
CD3 (Approve construction) Construction								
Number of detector module		1	3		7	17	27	40

GRETA Total Cost and Cost Profile

FY02 Dollar, with overhead

	Item P	urchase	Effo	rt
		(M\$)	(FTE	-yr)
•	Mechanical	0.9	5	
•	LN	0.5	4	
•	Detector	18.0	7	
•	Electronics	3.4	10	
•	Computer	1.1	13	
•	Installation	0.0	6	
•	Managemen	t 0.0	15	
•	Safety	0.0	3	
			63	
Τ	TOTAL (M\$)	23.9	12.6	36.5
_	+ escalation	42.9		
_	+ contingenc	54.5 (TEC)		
_	+ R/D, pre-oj	60.1 (TPC)		

By: Jay Marx, Bill Edwards, Bob Minor et al.

Conclusion

- R&D efforts have achieved the proof of principle.
- National effort involving Steering Committee and working groups.
- Cost and contingency estimates are made based on vendor price and engineering design.
- GRETA is ready to proceed as planned next step is CD0.