Detector Characterisation in Europe

THE UNIVERSITY of LIVERPOOL

M. Descovich*, <u>A.J. Boston</u>, J.R. Cresswell, S. Gros, A. Mather, P.J. Nolan, J. Norman, J. Thornhill, G. Turk

AGATA

J. Gerl, A. Görgen, K. Hauschild, T. Kröll, G. Ripamonti, N. Saito, C. Santos, J. Ljungvall, J. Simpson.

* Now at LBNL

Unis

Detector Characterisation

What is characterisation?

- How do you calibrate highly segmented detectors?
 - For energy
 - For position

- Determine the experimental response characteristics of a reference segmented germanium detector.
- Calculation of reference pulse shapes.
- Full characterisation of prototype crystals.
- Define how to characterise detectors.

Automated Scanning Tables

GSI / CSNSM Orsay

Ortec 6x4 Segmented Detector

- One 65mm diameter 80mm length crystal
- 24 way segmentation of outer boron implanted contact.
- Warm FET configuration.

Ortec 6x4 Segmented Detector

- Electrical segmentation of the outer boron implanted contact.
- 150µm separation between adjacent electrodes.

Example Pulse Shapes

Detector Surface Scan

- Trigger on centre contact @ 662 keV
- Collimator width 2mm
- Scan step size 2mm
- Collect data for 5 minutes at each position
- 1681 positions, 5.85 days, 160Gb of data.

Detector Surface Scan

Intensity distribution: Narrow gate

Intensity distribution: Wide gate

Intensity distribution: Compton

Detector Surface Scan

Front Segment Analysis

• Intensity distribution in front segment (preliminary).

Front ·

Back

• Image charge gate on interaction depth.

All Segment Analysis

• Gated on adjacent z-image charge

• Centre contact rise times as a function of radial interaction position.

Risetime: Linear fits for radius

Risetime vs Azimuthal position

Mirror Charge Asymmetry Analysis

$$\mathsf{A} = \frac{\mathsf{Q}_\mathsf{I} - \mathsf{Q}_\mathsf{r}}{\mathsf{Q}_\mathsf{I} + \mathsf{Q}_\mathsf{r}}$$

- Q₁ and Q_r are magnitudes of mirror charge signal in the left and right neighbour.
- The asymmetry cancels out the radial contribution and yields information regarding the azimuthal position of the main interaction.

Image charge asymmetry results

What can be achieved?

The Daresbury GRT4 VME Module

- 4 channel VME module
- Each channel:
 - 14 bit 80Mhz FADC
 - Two dedicated Xilinx Spartan 2 FPGAs
 - First contains circular buffer, traces in this buffer are tagged with 16 bit header and 48 bit timestamp.
 - Differentiated or non-differentiated configuration.
- Trigger in/out and gate in.
- MIDAS user interface to control card and write to tape.

Eurisys Mesures 6x6 Segmented Detector

 δ

6x6 Risetime Analysis

GREAT detector configuration

- Planar germanium crystal 24x12 way segmentation of 12cm x 6cm crystal.
- Large Clover Germanium detector

Cologne Experiment

- February 2003
- Cologne Tandem accelerator beam @70MeV.
- Pickup reaction in inverse kinematics
- ${}^{37}Cl+D \rightarrow {}^{38}Cl+p$
- ${}^{37}Cl+D \rightarrow {}^{38}Ar+n$
- Deuterated Ti-foil 500µg/cm².
- v/c ~6%
- Aim 2167keV transition in ³⁸Ar
- There is also population of this level following the β decay of ³⁸Cl produced in same reaction. – stopped \rightarrow gives intrinsic resolution.
- Angular spread of recoiling nuclei ~7.8keV best.

The EXOGAM Project

 16 Segmented Clover detectors with modular BGO Suppression shields

The EXOGAM Project

EXOGAM Scan

Centre contact intensity

- Outer contact intensity
- Number of 662keV photons detected as a function interaction position. For (a) Centre and (b) Outer contacts.

EXOGAM Scan

EXOGAM Scan

• The rate of change of intensity and risetime.