

GRETINA SIMULATIONS

Martina Descovich

Lawrence Berkeley National Laboratory

- **GRETA:** The Gamma-Ray Energy Tracking Array
- GRETINA: 1/4 of GRETA
- **GEANT 3.21 simulations**
- Preliminary results
- Future work

The **GRETA** geometry

- **GRETA** status -->> presented by I-Yang Lee
- The current design is based upon a geodistic configuration, consisting of
- 120 hexagons plus 12 pentagons
- Geometry by David Radford
- 2 kinds of slightly irregular hexagons: A and B
- 3 crystals arranged in 1 cryostat2 kinds of triple clusters
- Total of 40 triple clusters
- The inner radius of the Ge shell is 15 cm, which determines the dimensions of the Ge crystals

GRETINA geometry

- **GRETINA** is 1/4 of **GRETA**, i.e. 30 hex–Ge crystal –> 10 triple clusters
- Two different congifurations for GRETINA have been considered
- 1) close-packed symmetric section of sphere
- 2) Asymmetric section of sphere

The two configurations provides very similar results

- cylindrical inner hole of ~5 cm front diameter ~8 cm back diameter Partial tapered crystal 0.5 cm radius 9 cm length
- **36 segments** z-spacing:
- Flat taper angle = 10°
- two configurations **Triple cluster** AAB or ABB

1.0, 1.2, 1.6, 1.8, 2.2, 1.2 It has been calculated compromise between solid angle coverage that this geometry provides the best and Ge usage

Simulation Results

10 000 events have been considered ==>> statistical errors ~2% **EFFICIENCY and PEAK-TO-TOTAL RATIO** as a function of the gamma-ray energy

GRETINA

EFF and P/T have been calculated as a function of the gamma-ray energy

Future Work

- Include in the Geant geometry the packing of 3 and 4 crystals in 1 cryostat.
- Do the efficiency and the peak-to-total results change?
- Independent check of simulations will be carried out at LBL.
- Investigate gamma-ray tracking using developed progam.

Acknowledgments

Lawrence Berkeley National Laboratory

I.Y. Lee, P. Fallon, M. Cromaz, M.A. Delaplanque, R.M. Diamond, R.M. Clark, A. Kuhn, A.O. Macchiavelli, F.S. Stephens, D. Ward

Oak Ridge National Laboratory

D. Radford

Lawrence Livermore National Laboratory

K. Vetter