

I-Yang Lee

For the GRETA Steering Committee

Workshop on the Experimental Equipment for RIA March 18-22, 2003, Oak Ridge, Tennessee

Gamma-ray Tracking Concepts

Compton Suppressed Ge

N_{det} = 100 Peak efficiency = 0.1 Efficiency limited

N_{det} = 1000 (summing) Peak efficiency = 0.6 Too many detectors

Gamma Ray Tracking

 $N_{det} = 100$ Peak efficiency = 0.6 Segmentation

Tracking of photon interaction points → energy, position

Development of the U.S. gamma-ray tracking effort

- 1994 Conceptual design study
- 1995 Duke Town meeting (1996 LRP) first discussion
- 1997 First prototype received and tested
- 1998 Workshop on GRETA physics (LBNL)
- 1998 Workshop on experimental equipment for RIA (LBNL)
- 1999 GRETA advisory committee formed
- 1999 Second prototype received and tested
- 2000 Workshop on GRETA physics (MSU)
- 2000 Proposal for a GRETA module cluster submitted and reviewed, funded 2002
- 2001 National Steering Committee formed
- 2001 Santa Fe meeting (2002 LRP) presentation and discussion
- 2001 Workshop on Digital Electronics in Nuclear Physics (ANL)
- 2001 Workshop on Gamma-ray tracking detectors (Lowell)

• 2002 Gamma Ray Tracking Coordination Committee review -National plan for development of Gamma-ray tracking detectors in nuclear science

GRETA Steering Committee

Development and construction of a national Gamma-Ray Energy Tracking Array for nuclear science

- Con Beausang, *Yale University*
- Doug Cline, University of Rochester
- Thomas Glasmacher, Michigan State University
- I-Yang Lee, Lawrence Berkeley National Lab.
- C. Kim Lister, Argonne National Laboratory
- David Radford, *Oak Ridge National Laboratory*
- Mark Riley, *Florida State University*
- Demetrios Sarantites, *Washington University*

Recent NSAC Review

Report of NSAC facilities review subcommittee 3/3/03 (C. Glashausser, chair), ranked GRETA :

- Science
 - category 1 : Absolutely central
- Readiness

category 1 : Ready to initiate construction

R&D Accomplishments

Proof of principle: No show stoppers

Segmented detectors

- Energy resolution: 1.2 keV at 60 keV and 1.9 keV at 1332 keV
- Total integrated noise: < 5 keV (bandwidth 35 MHz)</p>
- 3-D position sensitivity: < 1 mm at 374 keV (single interaction)</p>

Signal analysis

- Adaptive grid search: 1-2 mm
- Least square: 1-2 mm
- Genetic algorithm: 2 mm
- Wavelet transformation: 5-6 mm

Tracking algorithms

- Compton tracking (150 keV < E_{γ} < 5 MeV) : eff = 50%, for m= 25.
- Pair tracking (E_{γ} > 5 MeV) : eff = 50%
- M. A. Deleplanque et al., Nucl. Instrum. Methods Phys. Res. A430, 292(1999).
- G. J. Schmid et al., Nucl. Instrum. Methods Phys. Res. A430, 69 (1999).
- K. Vetter et al., Nucl. Instrum. Methods Phys. Res. A452, 105 (2000).
- K. Vetter et al., Nucl. Instrum. Methods Phys. Res. A452, 223 (2000).

GRETA Resolving Power Realistic : Ω =0.8, Δ x=2 mm

Reaction	<Εγ> (MeV)	β	Μγ	Resolving Power	× Gammasphere
Stopped	5.0	0.0	4	2.1 × 10 ⁷	270
High spin					
normal kine.	1.0	0.04	20	3.3 × 10 ⁶	100
inverse kine.	1.0	0.07	20	3.0 × 10 ⁶	230
Coulex/transfer	1.5	0.1	15	4.5 × 10 ⁶	1000
Fragmentation					
in beam	1.5	0.5	6	6.3 × 10 ⁶	29000
Coulex	5.0	0.5	2	2.7×10^{3}	213

Recent Developments and future plans

- Full analysis of source measurements
- Design detector configuration
- Order three-crystal detector modules
- Design preamplifier
- Develop digital electronics
- Studied staged construction approach
- In-beam measurements
- Improve signal analysis algorithm
- Improve tracking algorithm

Full analysis of simulated and experimental data Detector Prototype II

Austin Kuhn, PhD Thesis, UC Berkeley, 2002.

Full analysis

- ¹³⁷Cs, ⁶⁰Co and ¹⁵²Eu, source distance= 12 cm
- Signal analysis (least square method)
 up to 4 segments and 2 interactions per segment (98% of all events)
- For single interaction per segment
 position resolution <1 mm, success rate=85%
- For two interactions per segment
 - position resolution =1 mm, success rate=70%
 - minimum separation =2 mm
- Compared Simulation with Data

¹⁵²Eu full analysis Gain in peak/total vs. efficiency

GRETA Detector Configuration

- Two types of irregular hexagon, 60 each
- Pack three crystals per cryostat → 40 modules

Detector – target distance = 15 cm

Three-crystal detector module Building Block of GRETA

- Tapered regular hexagon shape.
- DIA= 8 cm, L= 9 cm, 36 segments.
- Close packing of crystals with gap= 3.5 mm.
- On order and expecting delivery in Oct. 2003.
- Cost = \$750 k (\$450k for 40 units)

Jim Comins and Robin Lafever

Electronics Production

Vincent Riot, Harold Yaver and Bob Minor

Preamplifier

- Low noise
- high band width
- \$100/channel

Signal Digitizer

- Sampling rate = 100 MHz
- Resolution =12 bits
- \$500/channel

Signal Digitizer

Prototype specifications determined at ANL workshop

- Variable gain control
- **Digitization at 100MHz, 12 bits**
- Flexible triggering (internal, external, validation)
- Data processing
 - **Digital Leading Edge discriminator with programmable parameters**
 - **Digital Constant Fraction with programmable parameters**
 - **Digital Trapezoidal Shaping with programmable parameters**
 - Raw data sample storage of charge collection
- VME (readout/control)

Vincent Riot, Harold Yaver and Bob Minor – Engineering Division

GRETA Total Cost and Cost Profile

FY02 Dollar, with overhead

	Item	Purchase	Effo	rt
		(M\$)	(FTE	-yr)
•	Mechanica	.1 0.9	5	
•	LN	0.5	4	
•	Detector	18.0	7	
•	Electronics	s 3.4	10	
•	Computer	1.1	13	
•	Installation	n 0.0	6	
•	Manageme	ent 0.0	15	
•	Safety	0.0	3	
			63	
]	TOTAL (MS	\$) 23.9	12.6	36.5
-	+ escalation		42.9	
-	+ contingen	54.5 (TEC)		
-	+ R/D, pre-	60.1 (TPC)		

By: Jay Marx, Bill Edwards, Bob Minor et al.

Staged approach of GRETA

In 4 stages, each with increment of ¹/₄ of the detector

- First stage: GRETINA = $\frac{1}{4}$ of GRETA
 - 30 crystals (10 modules)
 - Complete computer software development
- Cost of \$16.7 M
- Construction period from 2004 2007
- Proposal is being developed

GRETA Staged Performance

Type of Reaction	<e<sub>γ> (MeV)</e<sub>	v/c	M_{γ}	Resolving Power	St (Rel	aging Relative Fa	ctor phere)
				$\Delta x = 2 \text{ mm}$ $\Omega = 80\%$	1/4	1/2	3/4
1) Stopped 2)	5.0 1.5	0.0 0.0	4 4	2.1 x 10 ⁷ 4.4 x 10 ⁷	.02 4 .02 1.5	.10 20 .11 9	.35 70 .34 28
3) High-spin Normal Kinematics	1.0	0.04	20	2.4 x 10 ⁶	.015 0.8	.08 4.5	.31 17
4) High-spin Inverse Kinematics	1.0	0.07	20	2.2 x 10 ⁶	015 1.8	.08 10	.30 36
5) Coulex/transfer	1.5	0.1	15	3.7 x 10 ⁶	.015 8	.09 47	.31 160
6) Fragmentation	1.5	0.5	6	5.9 x 10 ⁶	.008 100	.06 730	.25 3080
7) In beam Coulex 8)	5.0 1.5	0.5 0.5	2 2	2.7 X 10 ³ 4.1 x 10 ³	.41 45 .62 30	.60 66 .75 38	.77 85 .85 43

GRETA Staged Performance

Important Performance features of GRETINA

- Better position Resolution 2 mm vs. 20 mm
 High recoil velocity experiments
- Higher efficiency for high energy gamma rays
 - Giant resonances studies
- Compactness ¼ GRETA is comparable or better than Gammasphere
 - Use with auxiliary detectors, BGS, new CHICO, etc.

Nuclear structure studies with fast exotic beams

GRETA	Fraction of γ-rays detected at 100 MeV/A (NSCL)	Fraction of γ-rays detected at 250 MeV/A (RIA)
Stage 1 1/4	46%	59%
Stage 2 1/2	72%	81%
Stage 3 3/4	89%	93%
Stage 4 full	100%	100%

GRETINA Total Cost and Cost Profile

FY02 Dollar, with overhead, contingency and escalation

	Item	Cost (M\$)
•	Mechanical	1.56
•	LN	0.62
•	Detector	6.39
•	Electronics	2.95
•	Computer	4.05
•	Installation	0.26
•	Management	0.52
•	Safety	0.32
	Total	16.68

Conclusion

- **R&D** efforts achieved "proof of principle".
- **b** Engineering design started on critical items.
- Exciting physics case has been identified for gretina.
- National effort involving steering committee and working groups.

gretina / GRETA ready to initiate construction