

Gamma-ray detection for experiments with fast beams

T. Glasmacher

Michigan State University

Three "crucial questions"

in the chapter "Atomic Nuclei: Structure and Stability" of the 2002 Long-Rang Plan for Nuclear Science (p. 38)

- "What are the limits of nuclear existence? ..."
- "How do weak binding and extreme proton-toneutron asymmetries affect nuclear properties?"
- "How do the properties of nuclei evolve with changes in proton and neutron number, excitation energy and angular momentum?"

Experiments detecting gamma-rays from fast exotic beams will contribute to answering two of them

The Scientific Reach of RIA

Reactions with fast beams and thick targets

Need to optimize

$$N_{reactions} = \sigma \cdot N_{target} \cdot N_{beam}$$

Cross section σ

- Coulex (A=40)
- Coulex (A=150)
- Proton scattering
- 1-nucleon knockout
- 2-nucleon knockout

N_{beam}

All there is

N_{target}

- Hydrogen
- Gold

20–100 mbarn 100–1000 mbarn 2-20 mbarn 10-30 mbarn 1-5 mbarn

0.1 Hz - 100 Hz

 $1.32 \cdot 10^{23} - 6.6 \cdot 10^{23} (200-1000 \text{ mg/cm}^2)$ $6.7 \cdot 10^{20} - 3.35 \cdot 10^{21} (200-1000 \text{ mg/cm}^2)$

New spectroscopy methods developed for fast beams

- Inelastic scattering in inverse kinematics
 - Coulomb excitation
 - Proton scattering
 - Alpha scattering
 - Excited state energies, reduced transition matrix elements
- In-beam fragmentation

Excited state energies

- One- and two-nucleon-knockout reactions as spectroscopy tools
 - Spectroscopic factors

Need modular detector to accommodate particle detectors

Fast exotic beams Separation by physical means

- Made by fragmentation of primary beam (400 MeV/nucleon)
- Secondary beams ~350 MeV/nucleon
- Possibly large beam spot
- Large velocity (β=0.6)
- Event-by-event identification
- Energy spread $(\Delta p/p = 6\%)$

Need modular gamma detector to accommodate beam profile

Need fragment-gamma coincidence: the better—the cleaner

Large beam velocity Significant Dopplershift

Need twice the dynamic range compared to low-energy beams

Contributions to achievable energy resolution

Four major contributions to final energy resolution of photon spectrum emitted from a fast ($\beta \approx 0.4$) source:

- a) Intrinsic energy resolution of detector \rightarrow detector material
- b) Doppler broadening due to finite opening angle of detector

 \rightarrow detector granularity and distance from target

c) Doppler broadening due to slowing down of projectile in target

 \rightarrow target thickness (and element)

- d) Doppler broadening due to angular spread of projectile caused by scattering in target
 - \rightarrow target thickness (and element)

Doppler broadening due to finite opening angle of detector

$$E_{\gamma} = E_{\gamma}^{proj} \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \theta}$$

Doppler broadening due to slowing down of projectile in target

$$E_{\gamma} = E_{\gamma}^{proj} \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \theta}$$

Limits on achievable energy resolution

- $\Delta \theta$ is determined by detector's ability to reconstruct first γ -ray interaction point
- $\Delta\beta$ is determined by target thickness
- ΔE is determined by detector
- Old new paradigm for fast beam experiments with non- $4\pi \gamma$ -ray detectors:

Experimenter trades energy resolution ($\Delta \theta$) versus efficiency

For RIA, build large-coverage detector with sufficient spatial and energy resolution

Segmented Ge Detectors vs NaI(Tl)

Resolution comparison: Total ∆E in target Opening angle Intrinsic

Final energy resolution is of the order of 1% with target of order few 100 mg/cm² \rightarrow detector should have similar or better resolution

- \rightarrow Energy resolution of ~1% or better
- \rightarrow Angular resolution of $\sim 10 \text{ mrad}$

Angular distribution of dipole and qudrupole γ-rays

Some 3-D segmented Germanium detectors

- GRETA (Lawrence Berkeley Laboratory)
- PT6x2 (Liverpool)

• Cluster (Germany/Belgium)

• 32-fold (SeGA at MSU)

• MARS (Legnaro)

Fast beams and Germanium detectors work together Example SeGA: ⁸⁶Kr and ¹¹Be

- Six detectors at 109° 14 cm from target
- Details for ⁸⁶Kr
 - 12.04 GeV primary beam degraded to 7.1 GeV
 - Gold secondary target; 184 mg/cm^2
 - 4.5 hours

Details for ¹¹Be

- 2.24 GeV primary beam
- Gold secondary target 968 mg/cm²
- 6.5 hours

Summary

- Detector requirements
 - Efficiency, dynamic range, energy resolution, angular resolution, timing characteristics, modularity, coverage

HPGe based GRETA

Array of room-temperature semiconductor detectors CZT (2.5 times as efficient as NaI) HgI_2 (5 times as efficient as NaI) (Friday morning: Auxiliary detectors and new concepts in gamma detection)

Well-developed concept

Under initial investigation

1n knockout with SeGA ⁴⁶Ar(Be, ⁴⁵Ar γ)

140 MeV/nucleon ⁴⁰Ar from CCF \rightarrow 90 MeV/nucleon ⁴⁶Ar

Segmented Germanium Array (SeGA) Largest operational array of highly-segmented germanium detectors for fast beam experiments

W. Mueller *et al.* Nucl. Instr. Meth.
A 466 (2001) 492.
Z. Hu *et al.* Nucl. Instr. Meth.
A 482 (2002) 715.
K.L. Miller *et al.*, Nucl. Instr. Meth.
A 490 (2002) 140.

Two-proton knockout on neutron-rich nuclei around N=16 and N=20

Joachim Enders, P. Gregers Hansen

- N=16 ${}^{9}Be({}^{28}Mg, {}^{26}Ne+\gamma)X$
- N=20 ${}^{9}Be({}^{34}Si, {}^{32}Mg+\gamma)X$
- Access spectroscopy information of very neutronrich nuclei
- Cross sections smaller than one-neutron knockout but outweigh secondary beam production cross sections
 - For example, compare ²⁷Ne (1µb) to ²⁸Mg (1.5mb) from ⁴⁰Ar

- Mostly one-step process
 - Competing two-step process involves proton evaporation
 - Due to binding energies and Coulomb barrier, the neutron evaporation channel opens first

