3-D Position-Sensitive CdZnTe γ-Ray Spectrometers

<u>Zhong He</u>, Feng Zhang, Carolyn Lehner, Dan Xu, Glenn F. Knoll, David K. Wehe

Nuclear Engineering and Radiological Sciences Department The University of Michigan Ann Arbor, Michigan 48109-2104

> Acknowledgements Department of Energy, NA-22 Office

What is a 3-dimensional positionsensitive semiconductor detector?

Principle of Operation

From pixel #i:(E', x, y) Depth z = C/A = C/E'(E', z)_i $\Rightarrow E_0$ (True E) \downarrow (E₀, x, y, z)

Advantageous of 3-D detectors

- Single polarity charge sensing → Overcome the effects of severe hole trapping
- Depth sensing \rightarrow Correct electron trapping
- 3-D coordinates of interactions → Mitigate the effects of material non-uniformity to the scale of position resolution (~ 1mm)
- Minimum electronic noise (leakage current & detector capacitance are shared between pixels)
- γ-ray imaging
- Detector physics (increase sensitivity by recognizing signatures of radiation interactions)

The effect of electron trapping

There are virtually ~2400 voxel detectors on each device.

Results of first-generation detectors (1 cm³) were reported during 1998-2001

Importance of multiple interaction events

Modeled Fraction of 662 keV Multiple-Pixel Full Energy Deposition Events

Second-generation 3-D CdZnTe detectors can provide $(E,x,y,z)_i$ of multiple γ -ray interactions

Detector front-end

Detector system

Energy spectrum of ¹³⁷Cs from one-pixel events

Detector # 2.3 (120 working pixels): $V_{c} = -2000 \text{ V}; V_{A-G} = 80 \text{ V}$

Distribution of energy resolutions (one-pixel events)

Detector # 2.2 (120 working pixels): $V_{c} = -1400 \text{ V}$; $V_{A-G} = 90 \text{ V}$; Time = 50 h

Energy resolution can be further improved if the ASIC noise can be reduced from 6-7 keV (~1%) to ~3 keV (0.5%) FWHM as planned

Energy spectra of ¹³⁷Cs from two-pixel events

Detector # 2.3: $V_C = -2000 \text{ V}$; $V_{A-G} = 80 \text{ V}$; Time = 50 h

Measurement of multiple sources (one-pixel events)

Detector # 2.2 (120 working pixels): $V_{c} = -1400 \text{ V}$; $V_{A-G} = 90 \text{ V}$; Time = 1 h

Measurement of multiple sources (two-pixel events)

Detector # 2.2 (120 working pixels): $V_C = -1400 \text{ V}$; $V_{A-G} = 90 \text{ V}$; Time = 1 h

When ASIC noise is reduced to 3 keV FWHM

Summary on 3-D CdZnTe

• Energy resolution:

1.1% FWHM at 662 keV for single-pixel events \rightarrow (?) 2.0% FWHM for two-pixel events \rightarrow ?

- Position resolution in 3-D:
 1.2 mm in X-Y and ~ 0.5 mm in Z at 662 keV
- Energy depositions and 3-D positions of multiple-interactions are fully readout using ASIC for the **first** time.
- Current development: Improvement on ASIC (Testing 3rd design iteration ASICs) Larger detectors Miniaturize ASIC (for tile-able systems)
- Detector operation can be **simple** for end users

3-Dimensional Position-Sensitive HgI₂ γ-Ray Spectrometers

Zhong He and James E. Baciak

This program had been supported by Constellation Technology Corporation and NASA STTR program

Facts on HgI₂

- Advantageous
 - high Z (80-53)
 - high density (6.4 g/cm³)
 - (1 cm HgI₂ \approx 2-3 cm of CZT, more of Ge)
 - large band-gap (2.13 eV)

(room-temperature operation)

- Challenges
 - very low hole mobility, severe hole trapping
 - low electron mobility

(require higher bias ~1 kV/mm and long shaping time)

A sample 1cm thick HgI₂ Detector

If conventional readout technique is used

HgI₂ (#91321P91) = $12 \times 12 \times 10.05$ mm V(c) = - 2600 V; τ (c) = 10 µs; γ -rays incident from cathode

HgI₂ energy spectra versus interaction depth Detector: 93203N92; Pixel #2; V(c) = -2500 V; τ (a) = 16 µs; τ (c) = 8 µs

Energy spectrum from a 1cm thick HgI₂ detector Detector: 93203N91; Pixel #2, V(c) = -2500 V; $\tau(a) = \tau(c) = 8 \mu s$

Conclusions on HgI₂

- It is possible to construct HgI₂ gamma-ray spectrometers at thickness ~ 1 cm if a 3-D position sensitive single-polarity charge sensing technique is employed, and using low biases (2-2.6 kV) and moderate shaping times (6-10 µs).
 - Energy resolutions of 1.4% 2% FWHM at 662 keV were obtained from 6 out of 7 pixel anodes.
 - There is a potential to achieve better resolution on 1 cm thick devices.

Comparison between conventional and 3-D detectors for gamma spectroscopy Detector = $2 \times 2 \times 4.5$ cm CdZnTe

The sensitivity can be significantly improved (Especially useful when the background is high)