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" Physics Opportunities and Functional Requirements
for “Offline” y-ray spectrometers

C.J. Lister
Argonne National Laboratory

Even at an “Equipment” meeting....Physics First !

What will we be measuring with RIA?
Current examples of “Offline” y-spectroscopy
Functional Requirements for the future

Conclusions



@ What are the physics challenges at RIA?
Determine Spin-Orbit splitting.

Quantify Residual Interactions / Correlations
Measure Wavefunction Purity
Determine Strength Functions
Properties of poorly-bound states.
Devil is in the detail:
Look for NON YRAST states
Need DETAILED 1nvestigation of state wavefunctions.

Usually with very low intensity beams
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@ Fine structure at the proton dripine

Proton decay spectroscopy has evolved from a dripline curio to a precise
and detailed tool for probing nuclear wavefunctions

Theory has evolved to cover
Spherical
Deformed

Vibrational
Odd-odd
Triaxial Nuclei.

More complicated cases (e.g. odd-odds) need more than groundstate
decay for clear interpretation

Often, the combination of groundstate and excited state decays can allow
the parent to be unambiguously identified



) Fine structure following alpha decay
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PHYSICAL REVIEW C 66, 051307(R) (2002)
Population of the 168-keV (g,) excited state in *Sn in the a decay of 1'Te
D. Seweryniak,! W. B. Walters,? A. Woehr,? M. Lipoglavsek,® J. Shergur,® C. N. Davids,! A. Heinz,! and J. J. Ressler?
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@ Very Heavy Elements (Z > 100)

What can we learn about nuclear structure when the
production cross-section is nb (1037 m?) or even pb?

Even with GRETA, “In-Beam” spectroscopy becomes VERY
difficult.

But many of the decays have a-decay “Fine-structure”.
Which can be detected quite efficiently.

And o—y correlations, together with a-hindrance factors, can
pin down the 1dentification of Nilsson states near the Fermi
Level.



The Case of **Cf Decay

( I. Ahmad et. al. ANL 2003 )
cf-249 alpha, December 19, 2003
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A powerful though recently quite neglected tool.
A beautiful complement to “In-Beam” spectroscopy.
Populates “Non Yrast” states well
Low spin (A J = 0,1) Selection rules favored

Range of accessible states INCREASE as you move away from stability

Technical Drawback for very low production channels:
Finding an efficient and channel-specific trigger.

(B-spectrum is continuous)
(Lifetimes relatively long ~ seconds)



) Beta Decay Example: Decay of '°Ho Q

J. Agramunt et. al. (Valencia) in Nuclear Structure *98 from Gatlinburg Meeting

Experiments at GSI after mass separation. Data collected using Na(I) calorimetry....the
Total Absorption Spectrometer (TAS) AND using the “Cluster Cube”.

Result: h,,, to hy, “spin flip” Gammow-Teller decay DOMINATES. Cluster cube has
fantastic sensitivity to mixing of this into other states ( >1000 g-rays !!)
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GSI Cluster Cube Array




B-decay of 3'Zr

VOLUME 84, NUMBER 10 PHYSICAL REVIEW LETTERS 6 MarcH 2000

Half-Life Measurement for the rp-Process Waiting Point Nuclide 807y

J.J. Ressler,! A. Piechaczek,? W.B. Walters,! A. Aprahamian,’ M. Wiescher,? 1. C. Batchelder,* C.R. Bingham,>®
D.S. Brenner, T.N. Ginter,? C.J. Gross.*¢ R. Grzywacz,” D. Kulp,” B. MacDonald,? W. Reviol,? J. Rikovska,!
K. Rykaczewski,5!® J. A. Winger," and E.F. Zganjac®
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And at ANL at the back
of the FMA using a
motley array

At ORNL at the back of
the RS using “cluster”
detectors
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Physics Letters B 529 (2002) 42-49

140Dy Data

PHYSICS LETTERS B

www.elsevier.com/locate/npe

Identification of excited states in '*'Dy

First observation of the drip line nucleus
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140p)y: Identification of a7 ps K isomer populating
the ground state band
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Happily, in the end,
everyone agreed!!



@ Functional requirements for “offline’ arrays 6
Detection Efficiency is VERY VERY important as:

Mass Separation,

Selection Rules
Temporal Correlations (RDT, RBT, IT)

May have allowed the selection of the nucleus, AND state of interest
Energy and Time Resolution are VERY 1important for:

Signal-to-noise
Cases of “Many Gammas” (resolving multiplets)
Isomer 1dentification and measurement

Dynamic Range 1s VERY important

From X-Rays (for identification and C.E. measurement)
To ~10MeV (for the highest 3-decays)



@ Polarization and Angular Correlation

Measurements E

Generally, 1 “Offline” studies the y-multiplicity 1s low, and thus high
segmentation may not appear very important. Also, all the reaction-
induced alignment or polarization of magnetic substates have been lost.

BUT

Of course 1t can be regained by establishing a preferred “Z-direction”
From direction of emitted proton, or alpha particle (“Box” detector)
From first photon in y—y angular correlation. ( Pixel detector)

SO

Good SPATIAL RESOLUTION may be very useful

BONUS

“Directionality” helps reject background radiation
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A) Inner array for efficiently detecting (o.,p,,CE) decays

@ The X-Array: A step forward
Compact Three Layer Concept:

Highly segmented silicon DSSDs

Thin Wall Vacuum Envelope

B) Array of large area planar detectors for efficiently detecting
X-rays, and for polarization and correlation studies.

Highly segmented planar germanium DSSDs

C) Calorimeter of low-segmentation large germanium
detectors for efficient absorption of total gamma ray flux.

Large Volume non-segmented “clover” detectors



GARBO MCNP Geometry

Horizontal cross section Vertical cross section




MCNP Results

Photopeak efficiency Peak to Total (E > 30 keV)
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MCNP Results

GARBO MCNP efficiency
vs. Clover size in cm
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@ Conclusions
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New physics challenges will need new techniques.
Access to non-yrast states will be very important.

Combining the selection rules of (a,3,p,e7) decay, with the
power of y-spectroscopy, can give UNIQUE 1nsight into
nuclear wavefunctions.

The technological sophistication of “in-beam” y-arrays have
fantastic (and relatively unexplored) potential for decay
spectroscopy.

High Efficiency for “offline” y-decay is critical.
Excellent Energy and Time resolution are very important.

Spatial Resolution (Pixels or “Tracking”) i1s a big PLUS
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