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Physics Opportunities
Reaccelerated RIBs at RIA will provide an incredible opportunity

for whole classes of experiments:

Fusion-evaporation  -- for example (among many others):
• band structure in n-rich nuclei
• new K-isomers in Hf region, etc.

Coulomb excitation
• B(E2) values, transition moments
• static quadrupole moments by reorientation

Single-nucleon transfer reactions
• e.g. (d,p), (3He,d)  in inverse kinematics
• spectroscopic factors,  shell-model wavefunctions



Experimental Challenges

Beams are radioactive
• Stopped/scattered beam can give huge background
• Good beam quality & careful tuning essential

Beams are generally isobar cocktails, i.e. contaminated
e.g. HRIBF  A=132 beam:  87%Te, 12% Sb, 1% Sn
⇒ Need good γ-ray energy resolution

Beams are weak (or the interesting part is)
• γ,  γγ rates of interest generally  ≤ 1 /s
• Background rate from stopped beam may be ≥ ~ 104 /s (108 × 10-3)
⇒ Need best possible efficiency
⇒ Need clean trigger and good timing (to reduce randoms)

Usually require light targets, inverse kinematics
• Large recoil velocity,  Doppler broadening
⇒ Need excellent angular resolution
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Available Neutron-rich Radioactive Ion Beams
(over 100 beams with intensities ≥103 ions/sec)  

E/A = 3 MeV/amuE/A = 3 MeV/amu



Setup for experiments with neutron-rich RIBS

Target

Recoil Detectors

CLARION

HyBall

11 segmented clover Ge detectors

95 CsI detectors with photodiodes

Foil plus multichannel plate

50 cm downstream from target
and at RMS achromat



Fusion-Evaporation Reactions
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Example:  A = 136 Coulex

396 MeV 136Te  + 136Ba

on  0.83 mg/cm2  C  target
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Coulomb Excitation of Pure 128Sn RIB

Pure Beam
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BaF2 array  (150 crystals) for gammas
(2x37, 4x19)

132Sn Coulomb Excitation Measurement
- Jim Beene, Robert Varner et al.

• BaF2 single crystals, 
6.5cm dia., 20cm long

• ∆E = 10% at 1 MeV
• ∆Ω=0.65(4π)
• Detection eff. = 60%
• Total eff. = 40%



BaF2 array  (150 crystals) for gammas
(2x37, 4x19)

“CD” detector for 
scattered Sn and Ti

132Sn Coulomb Excitation Measurement
- Jim Beene, Robert Varner et al.



132Sn γ-yields

470 MeV495 MeV

• BaF2
• γ-particle Coincidence gate
• γ-identification in BaF2
• pack multiplicity 
• Array multiplicity
• Calibrations approximate

• CD
• Good strip
• Good wedge E
• Good wedge T

E(2+) E(2+)



134Sn at 400 MeV

• Success with 132Sn ->
– Measured 134Sn rate of 

2000/s (out of 10k/s total)
• E(2+)=0.725, near 48Ti 

E(2+)
• Choose 90Zr target 

E(2+)=2.186
• Same detector array
• Bragg counter

134Te134Sn134Ba



Our results in context

BaF2



Transfer Reactions with Neutron-Rich RIBS
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Neutron transfer with 134Te and 138Ba
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(d,p)  Reactions    -  e.g.  d(132Sn, p)133Sn

 Inverse kinematics leads to large kinematic broadening of proton energy

      Even with ~mm proton position resolution, beam spot gives large Ep spread

      Energy loss of heavy beam in target also spreads proton energy

 These effects lead to poor resolution in Q-value

      Cannot resolve states that are closer than ~300 keV
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New Idea: Use Gamma-ray Calorimetry

 Have seen that gamma detection can be used to identify excited states

      CLARION efficiency is too small for angular correlation measurements

       10% energy resolution would be sufficient to resolve most levels

      For moderate resolution but high efficiency, can select levels
             using the sum energy as well as individual cascades

 Spin Spectrometer:  a good gamma calorimeter for these experiments?

      70 large NaI crystals

      Energy resolution  10-12%,  efficiency  85%

Plan to try using the Spin Spectrometer to select levels of interest,
  and measuring proton cross-sections and angular correlations in coincidence.

 The ultimate tool will be  GRETA



Conclusions -- Gamma detection for ISOL
⇒ Gamma detection will be used in almost all experiments with 

reaccelerated beams at RIA
⇒ Need best possible efficiency, even at high energies (~ 4 MeV)

• The weakest beams will be the most interesting
• Many experiments will require γγcoincidences (or higher)
• May want to use array as a calorimeter and/or gamma-veto

⇒ Need clean trigger and good timing
• Real-to-random ratio can be crucial
• Gammas of interest may also be generated by beam decay

⇒ Need good energy resolution
• Helps in bypassing problems from isobaric contamination
• Improves signal-to-noise

⇒ Need good angular resolution
• Avoids Doppler broadening at high recoil velocity

⇒ Need as much space as possible inside the array
• Will need to be be used with a wide variety of auxiliary detectors



Conclusions -- Gamma detection for ISOL

⇒ GRETA: the ideal detector for ISOL experiments?
• Excellent efficiency, ~ 50% for low multiplicity
• Good efficiency even at high energies
• Best possible energy and angular resolution
• Good calorimeter

⇒ I predict that GRETA will be requested for the vast majority of
experiments using reaccelerated (& fragmentation?) beams at RIA!

• RIB experiments will be expensive, beam time in great demand
• Will always want as complete information as possible – e.g transfer
⇒ Must be “portable”
⇒ Must be kept as flexible as possible

→ inner space / diameter
→ trigger and readout



Conclusions -- Gamma detection for ISOL
⇒ Will also want a few other smaller systems for dedicated applications

• Close-packed clover array for decay studies etc.
• BaF2 array or similar for very high energy gammas
• Perhaps another ball with even better calorimetric properties
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Lead B(E2) Systematics

208Pb   B(E2) = 8.5 W.u.;   19% of Isoscalar E2 EWSR
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Neutron Transfer:  different targets

νp1/2

νp3/2

j = l - 1/2

j = l + 1/2

Te C

Are   j = l - 1/2 j = l + 1/2   transitions preferred?



RIB Coulex Analysis

 Measure =
-HyBall coincidences

      HyBall singles
C

R

 Calculate             for Coulex and Rutherford as a function of B(E2)
d
d

 Integrate    over the first three rings of HyBall

 Compare calculated                with observed             to get B(E2)C

R

H
H

 Correct for isobaric content of the beam

     - determined from Coulex of stable contaminants,
          decay counting and X-ray spectra



Beam Composition  from  Bragg-Curve Detector

Bragg detector  delta-E spectrum
A = 132 cocktail beam

Te
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Sn
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Intensity  and  Purity  of  132,133,134Sn  Beams  from  SnS
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B(E2) Results  with  QRPA Calculations   (Terasaki et al.)
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B(E2) Results  with  new  132Sn  and  QRPA Calculations

70 74 78 82 86 90
Neutron Number

0.1

0.3

0.5

B
(E

2;
 0

+
 

 2
+
) 

 (
e2 b

2 )

Xe

Te

Sn

Ba

Ce

 New Results
   QRPA



Coulomb Excitation of Pure 130Sn RIB
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132,134Sn Coulomb Excitation

• Collectivity of doubly 
magic 132Sn

• Systematics of 
collectivity in nearby 
nuclei - 134Sn

• Unique opportunity 
– pure Sn beams 

(104-105/s)
– BaF2 array (large ε)

• 132Sn + 48Ti  495 MeV
• 132Sn + 48TI 470 MeV 
• 134Sn + 90Zr 400 MeV



132Sn  Results  (Preliminary)

Sample gamma-ray spectrum:

48Ti 2+→0+

132Sn 2+→0+

• 132Sn beam, doubly stripped

~96% pure

1.3 x 105 ions/s!

3.56 MeV/u

• 48Ti target

• High γ efficiency  (~ 40%)

• Two-week experiment

• Fast γ–ion coincidences

to suppress background

B(E2; 0+→2+) ~ 0.14(6) e2b2

983 keV; 1.2 barns

4041 keV



Present Status of the Spin Spectrometer

 Spin Spectrometer has not been used for about 10 years

      New electronics and data acquisition system being assembled

      Washington University (St. Louis) helping with support and electronics

      HV has been applied to all 70 detectors;
            all detectors are giving output pulses

      Next step: resolution and efficiency tests for all detectors

      Tests of subset gave promising results;  8-14% resolution for 137Cs

 Spectrometer will need to be moved to a new beam line

      Present target room needed for second RIB platform



Some HRIBF beam currents

Singly stripped - suitable for Coulex
   For doubly stripped, divide by five
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Coulex Results:  Sn & Te Spectra

200 600 1000 1400
E   (keV)

200

600

1000

1400

50

150

250

350

450

200 600 1000 1400
E   (keV)

0

10

20

30

0

10

20

30

40

0

20

40

60

A = 136

A = 134

A = 132

A = 128

A = 126

126Sn

1141 keV

128Sn

1169 keV

132Te
974 keV

134Te
1279

keV

136Te
606 keV

126Te
666 keV

128Te
743 keV

134Ba
605 keV

136Ba
819 keV

Note multiple beam components



Sn

Pb

C

Ge

Si

6

14

32

50

82

Carbon

Silicon

Germanium

Tin

Lead

Pure Ge and Sn Beams

• Neutron-rich RIBs are “cocktail” beams;
Sn can be a small component
A=132 beam:  87%Te, 12% Sb, 1% Sn

• Solution: Extract from ion source as SnS+

and mass analyze for molecular ion
• Sulfur is added to the UC target via H2S
• Convert SnS+ to Sn- in a Cs-vapor cell

and mass analyze again for Sn mass
• Selection process against Te, Sb is unknown

- TeS+ SbS+ unstable?
• Similar purification for Ge beams




