Gamma Detection for ISOL Beams

David Radford ORNL Physics Division

RIA Workshop March 2003

Outline:

- RIBS: Experimental challenges
- Examples
 - Fusion-evaporation
 - RIB Coulomb Excitation
 - Single-nucleon transfer reactions
- Conclusions for RIA detector requirements

Physics Opportunities

Reaccelerated RIBs at RIA will provide an incredible opportunity for whole classes of experiments:

- Fusion-evaporation -- for example (among many others):
 - band structure in n-rich nuclei
 - new K-isomers in Hf region, etc.
- Coulomb excitation
 - B(E2) values, transition moments
 - static quadrupole moments by reorientation
- Single-nucleon transfer reactions
 - *e.g.* (d,p), (³He,d) in inverse kinematics
 - spectroscopic factors, shell-model wavefunctions

Experimental Challenges

Beams are radioactive

- Stopped/scattered beam can give huge background
- Good beam quality & careful tuning essential
- Beams are generally isobar cocktails, *i.e.* contaminated
 - e.g. HRIBF A=132 beam: 87%Te, 12% Sb, 1% Sn

 \Rightarrow Need good γ -ray *energy resolution*

- Beams are weak (or the interesting part is)
 - γ , $\gamma\gamma$ rates of interest generally ≤ 1 /s
 - Background rate from stopped beam may be $\geq \sim 10^4$ /s (10⁸ × 10⁻³)
 - \Rightarrow Need best possible *efficiency*
 - \Rightarrow Need *clean trigger* and *good timing* (to reduce randoms)
- Usually require light targets, inverse kinematics
 - Large recoil velocity, Doppler broadening
 - \Rightarrow Need excellent angular resolution

The Holifield Radioactive Ion Beam Facility

Available Neutron-rich Radioactive Ion Beams (over 100 beams with intensities $\geq 10^3$ ions/sec)

Setup for experiments with neutron-rich RIBS

Foil plus multichannel plate

CLARION

11 segmented clover Ge detectors

HyBall

95 CsI detectors with photodiodes

Fusion-Evaporation Reactions

Example: A = 136 Coulex

Coulomb Excitation of Pure ¹²⁸Sn RIB

¹³²Sn Coulomb Excitation Measurement

- Jim Beene, Robert Varner et al.

- BaF₂ single crystals, 6.5cm dia., 20cm long
- $\Delta E = 10\%$ at 1 MeV
- $\Delta\Omega = 0.65(4\pi)$
- Detection eff. = 60%
- Total eff. = 40%

¹³²Sn Coulomb Excitation Measurement

- Jim Beene, Robert Varner et al.

132 Sn γ -yields

• BaF_2

- γ -particle Coincidence gate
- γ -identification in BaF₂
- pack multiplicity
- Array multiplicity
- Calibrations approximate

- CD
 - Good strip
 - Good wedge E
 - Good wedge T

¹³⁴Sn at 400 MeV

- Success with ¹³²Sn ->
 - Measured ¹³⁴Sn rate of 2000/s (out of 10k/s total)
- E(2⁺)=0.725, near ⁴⁸Ti
 E(2⁺)
- Choose ⁹⁰Zr target E(2⁺)=2.186
- Same detector array
- Bragg counter

Our results in context

Results for 132 and 134 are very preliminary. The 132 analysis is based on a single BaF2 block. The final 132 uncertainty will be about 20% - compared to 50% on this plot.

Transfer Reactions with Neutron-Rich RIBS

Neutron transfer with ¹³⁴Te and ¹³⁸Ba

(d,p) Reactions - *e.g.* d(¹³²Sn, p)¹³³Sn

Inverse kinematics leads to large kinematic broadening of proton energy

- Even with ~mm proton position resolution, beam spot gives large E_p spread
- Energy loss of heavy beam in target also spreads proton energy

These effects lead to poor resolution in Q-value

Cannot resolve states that are closer than ~300 keV

Have seen that gamma detection can be used to identify excited states

- CLARION efficiency is too small for angular correlation measurements
- \sim 10% energy resolution would be sufficient to resolve most levels
- For moderate resolution but high efficiency, can select levels using the sum energy as well as individual cascades
- Spin Spectrometer: a good gamma calorimeter for these experiments?
 - 70 large Nal crystals
 - Energy resolution ~ 10-12%, efficiency ~ 85%

Plan to try using the Spin Spectrometer to select levels of interest, and measuring proton cross-sections and angular correlations in coincidence.

The ultimate tool will be GRETA

Conclusions -- Gamma detection for ISOL

- ⇒ Gamma detection will be used in almost all experiments with reaccelerated beams at RIA
- \Rightarrow Need best possible *efficiency*, even at high energies (~ 4 MeV)
 - The weakest beams will be the most interesting
 - Many experiments will require $\gamma\gamma$ coincidences (or higher)
 - May want to use array as a calorimeter and/or gamma-veto
- \Rightarrow Need clean trigger and *good timing*
 - Real-to-random ratio can be crucial
 - Gammas of interest may also be generated by beam decay
- \Rightarrow Need good *energy resolution*
 - Helps in bypassing problems from isobaric contamination
 - Improves signal-to-noise
- \Rightarrow Need good angular resolution
 - Avoids Doppler broadening at high recoil velocity
- \Rightarrow Need as much *space* as possible inside the array
 - Will need to be be used with a wide variety of auxiliary detectors

Conclusions -- Gamma detection for ISOL

\Rightarrow **GRETA:** the ideal detector for ISOL experiments?

- Excellent efficiency, ~ 50% for low multiplicity
- Good efficiency even at high energies
- Best possible energy and angular resolution
- Good calorimeter
- ⇒ I predict that GRETA will be requested for the vast majority of experiments using reaccelerated (& fragmentation?) beams at RIA!
 - RIB experiments will be expensive, beam time in great demand
 - Will always want as complete information as possible e.g transfer
 - \Rightarrow Must be "portable"
 - \Rightarrow Must be kept as flexible as possible
 - \rightarrow inner space / diameter
 - \rightarrow trigger and readout

Conclusions -- Gamma detection for ISOL

 \Rightarrow Will also want a few other smaller systems for dedicated applications

- Close-packed clover array for decay studies etc.
- BaF₂ array or similar for very high energy gammas
- Perhaps another ball with even better calorimetric properties

This page intentionally left blank

Lead B(E2) Systematics

²⁰⁸Pb B(E2) = 8.5 W.u.; 19% of Isoscalar E2 EWSR

Are $j = l - 1/2 \iff j = l + 1/2$ transitions preferred?

• Measure
$$\frac{\gamma - \text{HyBall coincidences}}{\text{HyBall singles}} = \frac{\sigma_{\text{C}}}{\sigma_{\text{R}}} \varepsilon_{\gamma}$$

• Calculate
$$\frac{d\sigma}{d\Omega}$$
 for Coulex and Rutherford as a function of B(E2)

• Integrate σ over the first three rings of HyBall

• Compare calculated
$$\frac{\sigma_{\rm C}}{\sigma_{\rm R}} \varepsilon_{\gamma}$$
 with observed $\frac{\gamma \rm H}{\rm H}$ to get B(E2)

Correct for isobaric content of the beam

- determined from Coulex of stable contaminants, decay counting and X-ray spectra

Beam Composition from Bragg-Curve Detector

Intensity and Purity of ^{132,133,134}Sn Beams from SnS

B(E2) Results with QRPA Calculations (Terasaki et al.)

B(E2) Results with new ¹³²Sn and QRPA Calculations

Coulomb Excitation of Pure ¹³⁰Sn RIB

^{132,134}Sn Coulomb Excitation

- Collectivity of doubly magic ¹³²Sn
- Systematics of collectivity in nearby nuclei - ¹³⁴Sn
- Unique opportunity
 - pure Sn beams
 (10⁴-10⁵/s)
 - $BaF_2 array (large \epsilon)$

- ¹³²Sn + ⁴⁸Ti 495 MeV
- ¹³²Sn + ⁴⁸TI 470 MeV
- ¹³⁴Sn + ⁹⁰Zr 400 MeV

¹³²Sn Results (Preliminary)

¹³²Sn beam, doubly stripped

~96% pure

1.3 x 10⁵ ions/s!

3.56 MeV/u

- ⁴⁸Ti target
- High γ efficiency (~ 40%)
- Two-week experiment
- Fast γ–ion coincidences
 to suppress background

B(E2; 0⁺→2⁺) ~ 0.14(6) e²b²

Sample gamma-ray spectrum:

Present Status of the Spin Spectrometer

- Spin Spectrometer has not been used for about 10 years
 - New electronics and data acquisition system being assembled
 - Washington University (St. Louis) helping with support and electronics
 - HV has been applied to all 70 detectors; all detectors are giving output pulses
 - Next step: resolution and efficiency tests for all detectors
 - Tests of subset gave promising results; 8-14% resolution for ¹³⁷Cs
- Spectrometer will need to be moved to a new beam line
 - Present target room needed for second RIB platform

Singly stripped - suitable for Coulex For doubly stripped, divide by five

HRIBF will be the only facility that can accelerate these beams above the Coulomb barrier for at least 4 - 5 years.

Total of over 100 beams with at least 10^3 ions/s.

Coulex Results: Sn & Te Spectra

Pure Ge and Sn Beams

- Neutron-rich RIBs are "cocktail" beams;
 Sn can be a small component
 A=132 beam: 87%Te, 12% Sb, 1% Sn
- Solution: Extract from ion source as SnS⁺ and mass analyze for molecular ion
- Sulfur is added to the UC target via H_2S
- Convert SnS⁺ to Sn⁻ in a Cs-vapor cell and mass analyze again for Sn mass
- Selection process against Te, Sb is unknown
 - TeS⁺ SbS⁺ unstable?
- Similar purification for Ge beams

