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Some Experimental Problems for
Gamma-Ray Experiments

Beam is radioactive - high background
Many beams will be low intensity

Most interesting cross-sections are usually small

Many experiments in Inverse-Kinematics — Doppler
broadening




S0 gamma-ray detector(s) need

High Resolution

High Efficiency

High Peak-to-Total

High Count Rate capability

High Selectivity (good coincidence efficiency and also use
triggers with aux. dets.,),

High Granularity to minimize Doppler broadening, for
high multiplicity and high count rates, also directional info
to reduce room background (tracking)

Be modular + easily movable for use with a range of aux.
dets.



Some Research Opportunities at RIA
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Apologies to non-US friends and
visitors for my lack of
experimental examples from

non-US Labs




Neutron Rich
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Coulomb Excitation Measurements Near '°2Sn I
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Example: A = 136 Coulex I
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Coulomb Excitation of Pure 3°Sn RIB I
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B(E2: 0°->2%) (¢’b?)

Hot off the press (very preliminary!
Beene, Varner et al)
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We’ve taken B(E2) measurements past the '3>Sn double closed shell!
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Transfer Reactions with Neutron-Rich RIBS |
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Studying Neutron Rich Nuclei
with GAMMASPHERE

Nuclides Produced by~ Cf Spontaneous Fission
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Newtron rich nuclei from deep-inelastic and transfer reactions

Triple gamma-gated spectra, in
coincidence with the scattered nucleus,
allow one to study weakly populated
(0.3 mb) neutron-rich nuclei e.g.""¥Yb.
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Fusion-Evaporation Reactions

David Radford
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Cross-Section (mb)

Calculated Residue Cross Sections for the Yb Chain
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Where some useful beams can take us
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High-A,
High-K,
High-I,
High-Def,
Hi-Mom!



Spectroscopy of the Heaviest Elements : Surprises in the survival of
the species. (Complementary studies with stable and RIA beams.)
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RIA can enable us to create certain nuclei at higher spin

——— Compound Nucleus using stable beams
—— Compound Nucleus using RIA
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The Quest tO Observe 7 TOTAL-ENERGY CROSS—SECTIONS
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Energy traps in Nuclei (Isomers)
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These metastable states occur in a small proportion of nuclei and have been found to
display some remarkable properties, properties that are far from being understood.
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These special states have told us a lot
about nuclear structure and the reduction
of pairing correlations with seniority in
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4- and 5-QP ISOMERS

log T1/2 (5)

RIA will allow us into new regions for study,
e.g. n-rich A=180 and p-rich A=130 and to
populate higher seniority quasi-particle states.

Neutron-rich side

@ tusion-evapowation a& deep-inelastic O captuowe R IA

B incomplete-fusion <» multinocleon-tanster W coalex
- * @ Ir
76 e | & |w |@ S 5;3@ Os
75 bt N RE S S 8 pxn Re

7 @ e & e & | @ xn | oexn 1:515& W
= w—
73 = = O’ O = O e Ta
72 |e|lg|e|lc|HMHE M= < o< o Hf
71 - & Lu
Ta ¥b
102 104 108 108 110 112 114 118 118 120
N
< . 145 L] (R
Stable beam limit X PO ———

s

Filip Kondev




Proton Rich



Physics at the Proton Drip Line I

*Spectroscopy at and beyond the dripline
Isospin symmetries and mirror pairs

* pn pairing correlations, new pairing phase?
« 100Sn and surrounding area

* rp-process passes this way, do any isomers
create waiting points?
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Really tough expts due to small cross-sections
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BOTH unstable and stable beams will play a role

In-beam studies: GRETA + nano-ball + recoil spectrometer
At the Focal Plane: Decay studies and Coulomb excitation




Spectroscopy at the Proton Drip Line: Excited States in '4'Ho.
Proton decay in a deformed potential.

Contour plot of quadrupole, B, , deformation as a

BETA - DEFORMATION S==H function of neutron and proton number.
B Abov 25

i 141Ho created once in every 5

=005
0.25-0.15

R = million reactions! GS + FMA +
RDT make it worthwhile.
(Seweryniak et al., PRL 86 (2001) 1458)
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Gamma-Ray Detectors



A key to all this wonderful new science 1s not only RIA but RIA
+ New Instrumentation. (plus dastardly cunning on our part!)

Experimental Equipment Report from workshop

danr_: ISOL Facilit- at LBNL July 98.

“..., after going through so much effort to create rare
and exotic nuclear species, it only makes sense to have
the best and most efficient detector systems to catch
their “precious signals”. It is therefore extremely
exciting that, ..... revolutionary breakthroughs in
gamma-ray technology seem possible.”

¥
R
¥

1
| ;\ Gamma-Ray Tracking is the future
=l of Gamma-Ray Spectroscopy!

H. Spieler (LBNL) “Novel technology turns into discovery potential.”

To extract the best science and to unlock new physics one must create
the right environment. I think we will have the right ingredients.

RIA + Tracking Dets. + Aux. Dets = Discovery Potential




A New Opportunity in Gamma-Ray Physics




Compare Gammasphere with GRETA

Gammasphere

Efficiency (1 MeV)
Efficiency (15 MeV)
Peak/Total (1 MeV)
Position resolution

8%
0.5%
55%
20mm

GRETA

10em

Germanium
Hevimet
BGO

55%
12%
85%
1 mm

IY Lee



GRETA Capabilities

Broad physics opportunities

e Resolving power: 107 vs. 10* ® Angular resolution (0.2° vs. 8°)

— Cross sections down to ~1 nb — N-rich exotic beams

e Most exotic nuclei * Coulomb excitation

o Heavy elements (e.g. 233,254No) — Fragmentation-beam spectroscopy
* Drip-line physics » Halos
« High level densities (e.g. chaos) * Evolution of shell structure

) Efﬁciency e Transfer reactions

(12% vs. 0.5% at E=15 MeV) @ Count rate per crystal

_ Shape of GDR (50 kHz vs. 10 kHz)
— Studies of hypernuclei — More efficient use of available beam
Intensity

e Efficiency (slow beams) . o
(55% vs. 9% at E =1.3 MeV) ® Linear polarization

— Fusion evaporation reactions

e Efficiency (fast beams) ¢ B.ackg.round rejection by
(55% vs. 0.5% at E, =1.3 Mev) direction
— Fast-beam spectroscopy with low IY Lee

rates -> RIA



Gamma-Ray Tracking Coordinating Committee Report,

July 02

Table 5.1.2: The calculated resolving power of GRETA for a variety of different reaction types ranging from p-decay
(low multiplicity and v/c = 0) to fragmentation of fast beams, to very high spin fusion evaporation reactions. The final
three columns list the improvement in the resolving power of GRETA, relative to Gammasphere, for three different
assumptions about the total solid angle coverage and position resolution of GRETA.

Type of Reaction <Ep> vic M,  Resolving Improvement Factor
| MeV) Power __(Relative to Gammasphere)
AXx =2 mm Ax =0 mm Ax=1mm Ax =2 mm
Q=80% Q=100% 0=90% Q=80%
Stopped 5.0 00 4 2.1x10 370 290 200
| 1.5 0.0 4 4.4 x 10 170 120 77
High-spin 1.0 004 20 24x10° 240 140 55
Normal Kinematics
High-spin 1.0 007 20 2.2 x 10° 600 340 120
Inverse Kinematics
Coulex/transfer 1.5 0.1 15 3.7x10° 2200 1320 510
Fragmentation 1.5 0.5 6 5.9 x 10° 137600 46570 12490
In beam Coulex 5.0 0.5 2 27X 10° 1510 440 110
1.5 0.5 2 4.1x10° 1800 180 50

www.pas.rochester.edu/~cline/GRTCC-report.pdf



The Nuclear Physics Scientific Horizon: I

Projects for the Next Twenty Years

Report of the Ad-hoc Facilities Subcommittee of the
Nuclear Science Advisory Committee

K. Lesko

B. Jacak

K. de Jager

R. Janssens

R. G. H. Robertson

B. Sherrill

W. Zajc

C. Glashausser (Chair)

MARCH 3, 2003

PROJECT

SCIENCE

Rare Isotope Accelerator

(RIA)

CEBAF 12 GeV Upgrade

READINESS

GRETA 1 1

RHIC 1I/eRHIC | 2
Underground Detector I 1 2/3
CEBAF IVELIC upgrade 1 3
Upgrade Stable Beam 3 3

Facility

RIATI 3 3
Underground Detector II | 3




PROJECT TITLE: Gamma Ray Energy Tracking

Arra (GRETAE%I
First Estimate : $50M -$99M 0O $100M-499M 0O
$500M-$1B [0 >$1B

SCIENCE (Category 1)
understanding  interplay of
collective modes
exploring (Z, N) limits for bound nuclei
unraveling properties of exotic nuclei
investigating density oscillations in nuclear matter

single-particle and

Unique?

Absolutely—this is a much improved version of

Gammasphere, itself perhaps without peer.

Different areas, synergies?

Since it is an essential complement of RIA, it ha s
applications in nuclear structure and astrophysics,
homeland security and medical physics.

Demand

A significant fraction of the expected users of RIA have
already organized to develop GRETA. A device like this
would be very useful soon, and essential at RIA.

Reviewed?

LRP 2002 noted: “The physics justification for a [new] 47
tracking array is extremely compelling, spanning a wide
range of fundamental questions...”

READINESS (Category 1)

Formally studied? Reviewed?

Engineering designs have been generated for all
critical components of the project. A national
gamma-ray  tracking coordination = committee
(GRTCC) has reviewed all aspects of the device
including the R&D plan, the mechanical design, the
specifications for detectors and electronics, the time
line for construction, the cost and contingency
estimates, etc.

Confident that technical challenges can be met?
Sufficient R&D?

Over the last 5 years, major R&D efforts at several
universities and national laboratories have validated
the GRETA concept and demonstrated proof of
principle. The major upcoming milestone will be the
testing of the three-crystal detector module. No high-
risk technical challenges were identified in the
GRTCC review and GRETA was found to be ready
to initiate construction.

Cost understood?

A total cost and cost profile has been generated by
Jay Marx, Bill Edwards, Bob Minor and others. The
cost depends critically on the price of the germanium
crystals, which has increased significantly recently.



Other Detector Needs and
Very Slow Beams ..........
Including Stopped!

For example, Decay spectroscopy and other
physics at the focal plane.

See Kim and others later this week



See Gammasphere at your local theater on June 20, 2003
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Estimated Yields at 400 bde¥iu (100KW), for Xe (2 = 54 )
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