4π Heavy-Ion Detector for γ-ray Spectroscopy

C.Y. Wu, D. Cline, H. Hua, A. Hayes, and R. Teng

Nuclear Structure Research Laboratory, Department of Physics,
University of Rochester, Rochester, NY 14627

• General review of the particle-γ coincident technique.

• Current status of the heavy-ion detector.

• Future generation of the heavy-ion detector.
General review of the particle-\(\gamma\) coincident technique

1) Selectivity is required for the huge amount of \(\gamma\)-ray information gathered by the modern \(\gamma\)-ray detector arrays.

2) The detection of reaction products in coincidence with \(\gamma\) rays provides a unique selectivity for the \(\gamma\)-ray spectroscopic study.

3) Ideal detector for the detection of reaction products:
 - A large solid angle in a compact geometric environment.
 - Light mass to minimize the impact of the \(\gamma\)-ray detection.
 - Sufficient position, time, or energy resolution.
 - Stability under hostile environments, such as the high counting rate and the long duration of running time.
 - Resistance to the radiation damage.
Current status of the heavy-ion detector

1) **Physical characteristics:**
 - Position-sensitive parallel-plate avalanche counter.
 - Highly segmented with a 4π coverage.

2) **Measurements:**
 - Two-body kinematics that includes the measurements of angles for both reaction productions and their time-of-flight difference.

3) **Pseudo-parameters derived:**
 - Masses of both reaction products.
 - Recoiling velocities of both reaction products.
 - Q-value.
 - Time tag to distinguish between the prompt and delayed events.

4) **Performance:**
 - Time resolution: ≈ 500 ps
 - Position resolution: $\approx 1^\circ$ in θ and $\approx 4.6^\circ$ in ϕ.
 - γ-ray energy resolution: $< 1\%$.
$^{208}\text{Pb} + ^{238}\text{U}$ at $E_{\text{lab}} = 1360$ MeV
118Sn + 162Dy at \(E_{\text{lab}} = 780 \text{ MeV} \), \(60^{\circ} \leq \theta_{\text{c.m.}} \leq 100^{\circ} \)

\(\Delta I = 0 \)

\(\Delta I = 1 \)

\(\Delta I = 2 \)

\(116\text{Sn} \rightarrow ^{12}_{2}\text{Sn-like} \rightarrow ^{16}_{5}\text{Dy-like} \)

Counts / keV

E\(_{\gamma}\) [keV]
170Er (238U, 238U) 170Er

$E_{\text{lab}} = 1358$ MeV

$100^\circ \leq \theta_{\text{c.m.}} \leq 140^\circ$
$^{100}\text{Mo} + ^{136}\text{Xe}$ at $E_{\text{lab}} = 700 \text{ MeV}$
5) Physics program:
 • Coulomb excitation:
 a) Fragmentation of both two-phonon γ-vibrational and octupole-vibrational strengths.
 b) Exotic structure, such as the population of the high-K isomeric bands and the rotationally aligned band.
 c) $X(5)$ symmetry.
 • Few-nucleon transfer reactions:
 a) Pairing degrees of freedom.
 b) Neutron-rich nuclei.
 c) Isomers.
 • Deep-inelastic reactions:
 a) Superdeformed minimum.
 b) Neutron-rich nuclei.
 c) Isomers.
 • Fission or fusion-fission reactions:
 a) Fission dynamics.
 b) Neutron-rich nuclei.
 c) Isomers.
Coulomb Excitation Paths of High-K Isomer Bands in ^{178}Hf

- K=4$^+$ band
 - Yield $\sim 10^{-4}$
 - K-allowed transitions

- γ-band
 - Yield $\sim 10^{-4}$

- K=6$^+$
 - Yield $\sim 10^{-4}$
 - Coulomb Excitation Paths of High-K Isomer Bands

- K=8$^-$
 - Yield $\sim 10^{-4}$

- K=16$^+$
 - Yield $\sim 10^{-4}$
 - K-forbidden transitions
 - 31 yrs

- GSB
 - 4.0 s
Future generation of the heavy-ion detector

1) Required improvement:
 - The position resolution should match, at least, with that of GRETA.
 - High efficiency and large solid angle become more important for the low-intensity beam of RIA facility.

2) Current design parameters:
 - Six sectors in a sphere of 9-inch diameter.
 - Minimum flight path: 9.1 cm.
 - Angular coverage: $20^\circ < \theta < 83^\circ$.
 - Two-dimension read-out cathode board with the position resolution < 3 mm.