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Abstract
We describe a new Bell test for two-particle entangled systems that engages
an unbounded continuous variable. The continuous variable state is allowed to
be arbitrary and inaccessible to direct measurements. A systematic method is
introduced to perform the required measurements indirectly. Our results provide
new perspectives on both the study of local realistic theory for continuous-
variable systems and on the non-local control theory of quantum information.

S Online supplementary data available from stacks.iop.org/NJP/16/013033/
mmedia

The issue of incompatibility between local realism and the completeness of quantum mechanics
was originally raised for unbounded continuous variables in two-party systems by Einstein
et al [1]. Experiments to test local realism based on inequalities proposed by Bell [2] and his
followers [3] imply, as is well known, that classical realism must be discarded as the basis for
a universal theory. This has been repeatedly demonstrated in experiments with discrete variable
systems [4–8].

Methods for testing local realism in continuous-variable systems have been proposed in
order to advance the goal of reaching a completely loophole-free conclusion, and experimental
tests on continuous-variable systems have been carried out [9–13]. However, these tests and all
continuous-variable proposals to date [9–20] fall short because they rely on advance knowledge
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of the state under test. These methods fail whenever the state under test is unknown because
then there is no basis by which measurement strategies can be guaranteed effective. One reason
is that non-local correlations present in the original state can evade detection under dimensional
reduction [21], as may happen, for example, in pursuing pseudo-spin [13, 18, 19] or binning [20]
methods. An exceptional approach by Cavalcanti et al [22] leads to a continuous multipartite
inequality that does not rely on advance knowledge of the state under test. However, to construct
their inequality, operator commutation relations must be ignored, which also eliminates a large
category of local realistic theories from test—Sun et al [22]. Additionally, violation of these
inequalities may not be possible with only two parties—Salles et al [22].

Thus two obstacles that have not yet been overcome are these: to derive a standard
Bell–Clauser, Horne, Shimony and Holt (CHSH) inequality [3] for an arbitrary and unknown
bipartite input state in an unbounded continuous-variable state space, and to describe a currently
feasible experimental method for its test. There are significant fundamental and practical reasons
for solving this problem. On the fundamental side, a clear understanding of the domains of
continuous-variable space which are incompatible with local realism remains to be achieved.
More practically, in recent years paradigm-shifting quantum technologies have been developed
which depend upon Bell non-locality in theory, and in some cases require the experimental
violation of a Bell inequality of an unknown state [23]2. Methods which permit Bell–CHSH
inequalities to be formed and then tested on unknown states in continuous-variable systems
may aid in the development and implementation of these technologies.

In this paper we take a significant step towards overcoming both obstacles. To provide
easy visualization, we address both issues in a specific scenario using the following two-photon
down-conversion state:

|ψAB〉 = cos θ |H〉A ⊗

∫
d Eq h( Eq)| Eq〉B + sin θ |V 〉A ⊗

∫
d Eq v( Eq)| Eq〉B, (1)

where |Eq〉B is one of a continuum of delta-normalized one-photon transverse momentum states
of photon B, and |H〉A and |V 〉A denote horizontally and vertically polarized quantum states of
photon A. We assume that the transverse momentum state of photon A and the polarization of
photon B factor out of the quantum state and therefore need not be indicated.

The sin θ and cos θ factors are included in writing |ψAB〉 to preserve its unit normalization,
as the complex continuum amplitudes h( Eq) and v( Eq) are assumed to be unit-normalized, i.e.∫

d Eq |h( Eq)|2 =
∫

d Eq |v( Eq)|2 = 1. Beyond normalization, nothing else is assumed about h( Eq)
and v( Eq), including the value of their generally non-zero scalar product∫

d Eq h∗( Eq)v( Eq)≡ z 6= 0. (2)

The two-photon state in (1) has an important freedom in the amplitude functions h( Eq) and v( Eq),
which are arbitrary superpositions of the modes in continuous Eq space. In the following we will
use the term bundle to refer to an arbitrary superposition of | Eq〉 states. Note that this means that
it is impossible to fully determine the state (infinitely many measurements would be required).
This point is crucial because it is the stopping point for attempts up to the present time to fully
engage a continuous degree of freedom in Bell inequality analysis. We have overcome this
roadblock, as we describe below.
2 These technologies include quantum-assisted communication complexity, quantum-assisted zero-error
communication, device-independent quantum key distribution and device-independent randomness generation. For
a brief introduction to these topics see Brunner et al [23].
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It is natural to use the Schmidt analysis in considering two-party pure state entanglement,
whether discrete or continuous. The Schmidt decomposition [24] reformulates the state (1) as

|ψAB〉 =

∞∑
n=1

κn|un〉A| fn〉B, (3)

where the sets {|un〉A} and {| fn〉B} are superpositions of A’s polarization states and B’s
momentum states, respectively, and are derivable as the eigenvectors of A’s discrete and B’s
continuous reduced density matrices. The κ2

n are the associated eigenvalues, which are always
the same for the two reduced density matrices.

Note that since party A has only two dimensions it has only two eigenvalues, and this forces
all but two of B’s infinitely many Schmidt eigenvalues to vanish. Thus the infinite n sum in (3)
has only two non-zero terms, which we write

|ψ〉 = κ1|u1〉| f1〉 + κ2|u2〉| f2〉, (4)

where we have dropped the A and B labels because it will be easy to remember that the
discrete states belong to photon A and the continuous states to photon B. Here |u1〉 and |u2〉

are merely rotations of the original polarization states |H〉 and |V 〉, and | f1〉 and | f2〉 are
unknown bundles of B’s momentum states | Eq〉, and we write them as | f1〉 =

∫
d Eq ϕ1( Eq)| Eq〉

and | f2〉 =
∫

d Eq ϕ2( Eq)| Eq〉, with a key orthogonality property

〈 f1| f2〉 =

∫
d Eq ϕ∗

1( Eq)ϕ2( Eq)= 0, (5)

guaranteed by the Schmidt rearrangement (a similar but fully classical situation has been
examined in [25]). κ1 and κ2 are real positive coefficients analogous to the sin θ and cos θ
in (1), with κ2

1 + κ2
2 = 1. We note that because h( Eq) and v( Eq) are unknown, then {κ1, κ2} are

also unknown. Lastly, for simplicity in the following derivation, we assume that z is real-valued
which ensures that |ui〉 is linearly polarized.

The Schmidt theorem provides an optimum result in three ways. Firstly, as partners for
the rotated polarization states it makes two bundles of momentum states from the (presumed
unknown) amplitudes h(Eq) and v( Eq). Secondly, it guarantees that those state bundles are
orthogonal, and so we have a pair of orthonormality relations 〈ui |u j〉 = 〈 fi | f j〉 = δi j . Thirdly,
independent of the makeup of the two bundles, the Schmidt states | f1〉 and | f2〉 define a plane
in the infinite dimensional | Eq〉 space.

We are now much closer to Bell inequality territory because rotations in planes in A and B
spaces are what the CHSH inequality demands. But the bundles of continuum states making up
the two Schmidt states | f1〉 and | f2〉 are mysterious because the original functions h( Eq) and v( Eq)
were unknown. There are no operators available in continuum B space to make the rotations
required by the Bell–CHSH analysis. We will describe below how to make measurements in
a rotated basis in the continuum space without rotation operators for the space, but first let
us reproduce the Bell–CHSH inequality analysis, under the assumption that rotations in the
| f1〉–| f2〉 plane can be controlled.

With ordinary optical components one can always undertake a rotation of the Schmidt basis
in photon A’s polarization space, i.e.

|uα1 〉 = cosα|u1〉 + sinα|u2〉, (6)

|uα2 〉 = − sinα|u1〉 + cosα|u2〉, (7)

3



New J. Phys. 16 (2014) 013033 X-F Qian et al

where α defines the arbitrary rotation angle. A rotated basis | f β1 〉, | f β2 〉 of momentum space
bundles for photon B can be defined similarly with β as the rotation angle in Eq space, while the
practical matter of accomplishing such a rotation remains temporarily an open question.

However, given these rotations, the conventional CHSH analysis of local hidden variable
theory [3] can be employed. One considers the Bell operator B and finds B 6 2, where B is
defined as

B = C(α, β)− C(α, β ′)+ C(α′, β)+ C(α′, β ′). (8)

Here C(α, β) is the CHSH correlation between photons A and B when the measurements are
set for the angles α and β, and Pi j(α, β) are the joint probabilities of finding photon A in state
|uαi 〉 and photon B in state | f βj 〉, with i, j = 1, 2. That is,

C(α, β)= P11(α, β)− P12(α, β)− P21(α, β)+ P22(α, β). (9)

According to quantum mechanics, the joint probability is given as Pi j(α, β)=

〈ψAB|uαi 〉| f βj 〉〈 f βj |〈uαi |ψAB〉, which is a joint projection in the state spaces of both pho-
tons and has the potential to violate the CHSH inequality. Then the Bell operator B can be
calculated to be

B = 2κ1κ2

[
sin 2α(sin 2β − sin 2β ′)+ sin 2α′(sin 2β + sin 2β ′)

]
+ cos 2α(cos 2β − cos 2β ′)+ cos 2α′(cos 2β + cos 2β ′). (10)

For the choices α = 0, β = π/8, α′
= α +π/4 and β ′

= β +π/4, one finds

B =
√

2(2κ1κ2 + 1). (11)

There will be a Bell violation, B > 2, whenever 2κ1κ2 >
√

2 − 1. Obviously this can be satisfied,
and for the state with κ1 = κ2 = 1/

√
2 even the Cirelson bound is attained, i.e. B reaches the

maximum value 2
√

2. In fact, as was pointed by Gisin [26], the pure state (4) will always
violate the CHSH inequality for any non-zero κ1 and κ2 if one chooses the angles α, α′, β and
β ′ properly.

As described above, the central hurdle to be overcome is the lack of a method
to measure the Schmidt bundles in the continuous |Eq〉 space of photon B. As we now
demonstrate, a specially engineered auxiliary photon is sufficient to accomplish this. The
requisite auxiliary photon can be easily created using an auxiliary entangled state which is
identical to the original state. Practical techniques for generating pairs of identical entangled
biphotons are available, as discussed in the supplementary information (available from
stacks.iop.org/NJP/16/013033/mmedia), so we proceed with the setup sketched in figure 1.

Source St emits a pair of photons in the desired discrete-continuum entangled state, of
which the Schmidt form is

|ψ〉t t̄ = κ1|u1〉t | f1〉t̄
+ κ2|u2〉t | f2〉t̄

. (12)

The discretely (polarization) entangled photon in mode t is heading northwest (NW) and the
continuously (momentum) entangled photon in mode t̄ is heading southeast (SE), illustrated by
the red paths in figure 1. The goal of our following analysis is to propose a Bell test, namely,
measuring various correlations in terms of joint probabilities, for such a discrete-continuum

4
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Figure 1. Schematic illustration of Bell test for discrete-continuum entangled photon
pairs. The red source St emits a photon pair |ψ〉t t̄ , where the discrete (polarization)
space of the photon propagating toward NW in mode t is entangled with the continuous
(e.g. momentum) space of the photon heading SE in mode t̄ . The blue source Sa emits
identical photon pairs denoted as |ψ〉aā with the discretely and continuously entangled
photons propagating toward SW and NE, respectively. The photon in mode t passes
through a polarizer ûαi that passes only the polarization component |uαi 〉, and then enters
mode T for detection. Similar actions are taken for the photon in mode a with a polarizer
ûs

1 that passes only the polarization component |us
1〉. The photons in modes t̄ and ā are

combined by a 50:50 BS with two outcome modes T̄ and Ā being detected.

entangled state regardless of what is known or not known about the continuous-space photon in
mode t̄ and whether it is accessible or not to direct measurement.

A polarization projection on basis |uα1 〉 for the photon in mode t can be realized with a
polarizer ûα1 that passes the |uα1 〉 component into mode T , i.e.

|uα1 〉t t〈u
α
1 |ψ〉t t̄ = |uα1 〉T {κ1cα| f1〉t̄ + κ2sα| f2〉t̄}, (13)

where cα and sα stand for cosα and sinα. The probability of this measurement outcome
being realized is given by P1(α)= t t̄〈ψ |uα1 〉t t〈uα1 |ψ〉t t̄ = κ2

1 c2
α + κ2

2 s2
α, and can be determined

experimentally by recording the number of coincidences detected during a fixed time window
in modes (T, t̄) and (t, t̄) for polarizer angle α

P1(α)=
Nα(T, t̄)

N (t, t̄)
, (14)

where Nα(T, t̄) and N (t, t̄) are the number of coincidences in their corresponding modes. This
also gives the value of κ1 and κ2 since κ2

1 + κ2
2 = 1 as stated after (5).

To determine joint probabilities, one needs to measure the continuum space in a basis
rotated by the angle β as well, so we now express the state in the rotated basis, {| f β1 〉, | f β2 〉},

|uα1 〉t t〈u
α
1 |ψ〉t t̄ = |uα1 〉T

{
(κ1cαcβ + κ2sαsβ)| f β1 〉t̄ + (−κ1cαsβ + κ2sαcβ)| f β2 〉t̄

}
, (15)

which we rewrite again as

|uα1 〉t t〈u
α
1 |ψ〉t t̄ =

√
P1(α)|u

α
1 〉T

(
c11| f β1 〉t̄ + c12| f β2 〉t̄

)
. (16)

Here ci j with i, j = 1, 2, are normalized amplitude coefficients, and they relate to joint
probabilities in an obvious way: Pi j(α, β)= |ci j |

2 Pi(α).
Now that the probability Pi(α) can be measured easily, as is shown above, the value of

joint probability Pi j(α, β) can be determined by measuring only the coefficients |ci j |
2. This can
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be realized with the help of the auxiliary photon pair |ψ〉aā, which is generated by source Sa to
have exactly the same form as the state under test, i.e.

|ψ〉aā = κ1|u1〉a| f1〉ā + κ2|u2〉a| f2〉ā (17)

with the discretely entangled photon in mode a heading SW and the continuously entangled
photon in mode ā heading NE, illustrated by the blue paths in figure 1.

The auxiliary photon pair allows us to perform an indirect measurement in the continuous-
variable space of the photon in mode t̄ . First, the mode a photon of the auxiliary pair is projected
(by a polarizer ûs

1) onto the polarization basis |us
1〉, where angle s is chosen to strip off the | f β2 〉

component from the photon in mode ā. A glance at (15) shows how a stripping in continuum
space by action in polarization space works. In (15), by choosing α such that κ1 tanβ = κ2 tanα,
the | f β2 〉 component would be eliminated. In the case of auxiliary photon a, we choose s such
that κ1 tanβ = κ2 tan s and obtain

|us
1〉a a〈u

s
1|ψ〉aā =

√
P1(s)|u

s
1〉A| f β1 〉ā (18)

with P1(s)= aā〈ψ |us
1〉a a〈us

1|ψ〉aā. Pi(s) is determined experimentally in exactly the same way
as Pi(α). The photon enters mode A from mode a after passing the stripping polarizer ûs

1, as
shown in figure 1. Then the four-photon state after the two polarization projections in modes t
and a is given by

|ψ〉T t̄ Aā =

√
P1(α)P1(s)|u

α
1 〉T |us

1〉A ⊗

(
c11| f β1 〉t̄ + c12| f β2 〉t̄

)
⊗ | f β1 〉ā. (19)

Next, as shown in figure 1, the mode t̄ photon is combined with the mode ā photon (which is
in the continuous variable state | f β1 〉) by a 50:50 beam splitter (BS). The outcome modes are
denoted as T̄ (NE) and Ā (SE). The effect of the BS can be expressed as

| f βj 〉t̄ =

(
| f βj 〉 Ā + i | f βj 〉T̄

)
/
√

2, (20)

| f βj 〉ā =

(
i | f βj 〉 Ā + | f βj 〉T̄

)
/
√

2, (21)

where j = 1, 2. As a result of Hong–Ou–Mandel interference [27], the coincidence of the
outcome photons in modes T̄ and Ā determines the degree of distinguishability between the
photons in modes t̄ and ā. To be more specific, the contributing component of the mode t̄
photon in equation (19) to the coincidences after the BS is c12| f β2 〉t̄ , which is the distinguishable
component of the photon in mode ā. This amounts to a filtering or projecting operation of the
photon in mode t̄ onto the continuous variable basis | f β2 〉.

With the above operations, a joint projection is realized for testing the entangled photon
pair |ψ〉t t̄ . It is then straightforward to achieve the joint probability P12(α, β). The four-photon
coincidence probability in modes T, T̄ , A, Ā is given as

PT T̄ AĀ(α, β)=
P1(α)P1(s)|c12|

2

2
=

Nαβ(T, A, T̄ , Ā)

N (t, a, t̄, ā)
, (22)

where Nαβ(T, A, T̄ , Ā) and N (t, a, t̄, ā) are four-photon coincidence counts of the
corresponding modes for polarization angles α and β. The individual probabilities can be
determined using (14). Consequently, the joint probability can be written in terms of measurable
quantities

P12(α, β)=
2N (a, ā)Nαβ(T, A, T̄ , Ā)

Ns(A, ā)N (t, a, t̄, ā)
. (23)
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Measurement of the other joint probabilities P11(α, β) and P2 j(α, β) are accomplished
by appropriately rotating the angles α and β by π/2. In this way the correlation function
C(α, β) can be achieved straightforwardly. Other correlations can be obtained similarly with
other choices of angles α and β. To achieve the Bell violation given in (11) the orientation of
the stripping polarizer is determined as tan s = (κ1/κ2)(

√
2 − 1) and tan s ′

= (κ1/κ2)(
√

2 + 1).
Beyond the Bell violation issue, it is important to note that our method of measuring

the continuous-variable space is an example of non-local quantum control and is essentially
the same as that used by Pavičić and Summhammer [28] in an early entanglement swapping
experiment. It provides a new perspective on indirect measurement of a system state which
is not directly accessible experimentally. We have shown explicitly how, by manipulating a
discrete and controllable entangled partner, measurements of a continuum system may be made.
Apart from increased measurement capabilities, this type of indirect measurement may be useful
for transferring or encoding information into continuous-variable spaces which are difficult
to detect or probe directly. Therefore, with proper design, it may be possible to construct
communication protocols which impede potential eavesdroppers from obtaining the encoded
information.

In summary, we have addressed the two obstacles mentioned in paragraph 3, obtaining a
resolution with the aid of a new approach to continuous-variable measurement. Specifically,
we have devised a Bell-CHSH inequality for the two-particle case in which one particle is
defined by an unbounded continuous variable in a unknown state of arbitrary complexity,
and we have sketched a currently feasible measurement approach for its implementation. This
technique may expand further the systems in which Bell non-locality may be used for practical
applications [23].
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