NEUT 1π channels

1

Clarence Wret c.wret14@imperial.ac.uk

Imperial College London

October 21, 2015

Foreword

- Plots generated with NEUT v5.3.3 nominal
- The 1π model is described by Graczyk, Kielczewska, Przewlocki & Sobczyk (Phys.Rev.D80:093001,2009) which only considers the Δ resonance, and is NOT the full Rein-Sehgal model
- This version of NEUT is tuned to ANL and BNL 1π data by Phil Rodriguez (T2K TN-197)
- This tune found $M_A^{1\pi} = 0.95$, $C_5^A = 1.01$, $I_{1/2} = 1.30$
- The coherent model is Berger-Sehgal, which was not by default included in NEUT v5.3.3
- Deuterium effects are NOT considered
- Any data/MC discrepancy is thereby due to some nuclear effect, not present in a H₂ or D₂ environment

Table of contents

$\mathsf{CC1}\pi^+$

$\mathrm{CC1}\pi^+/\mathrm{CCQE}$

 $\mathrm{CC}1\pi^0$

 $\mathsf{NC}1\pi^0$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

$CC1\pi^+$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data/MC ratio for MB_CCpip_2DTpiCospi

Data/MC ratio for MB_CCpip_2DTpiEnu

7

Data/MC ratio for MB_CCpip_2DTuCosmu

8

Data/MC ratio for MB_CCpip_2DTuEnu

9

Data/MC ratio for MB_CCpip_numu_1DQ2

Data/MC ratio for MB_CCpip_numu_1DTpi

Data/MC ratio for MB_CCpip_numu_1DTu

Data/MC ratio for MINERvA_CCpip_numu_1Dth_20deg

Data/MC ratio for MINERvA_CCpip_numu_1Dth

Data/MC ratio for MINERvA_CCpip_numu_1DTpi_20deg

Data/MC ratio for MINERvA_CCpip_numu_1DTpi

Data/MC ratio for T2K_CCpip_1Dcosmu_nu

Data/MC ratio for T2K_CCpip_1Dcosmupi_nu

Data/MC ratio for T2K_CCpip_1Dcospi_nu

Data/MC ratio for T2K_CCpip_1DEnuDelta_nu

Data/MC ratio for T2K_CCpip_1DEnuMB_nu

Data/MC ratio for T2K_CCpip_1Dpmu_nu

Data/MC ratio for T2K_CCpip_1Dppip_nu

$CC1\pi^+/CCQE$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Data/MC ratio for K2K_CCpip_CCQE_numu_1DEnu

Data/MC ratio for MB_CCpip_CCQELike_numu_1DEnu

Data/MC ratio for MB_CCpip_CCQE_numu_1DEnu

$CC1\pi^0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data/MC ratio for MB_CCpi0_numu_1Dcosmu

Data/MC ratio for MB_CCpi0_numu_1Dcospi0

Data/MC ratio for MB_CCpi0_numu_1DEnu

Data/MC ratio for MB_CCpi0_numu_1Dppi0

Data/MC ratio for MB_CCpi0_numu_1DQ2

Data/MC ratio for MB_CCpi0_numu_1DTu

Data/MC ratio for MINERvA_CCpi0_numubar_1Dppi0

Data/MC ratio for MINERvA_CCpi0_numubar_1Dth

$NC1\pi^0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data/MC ratio for K2K_NCpi0_numu_1Dppi0

Data/MC ratio for MB_NCpi0_joint_nu_1Dcospi0

Data/MC ratio for MB_NCpi0_joint_nu_1Dppi0

Data/MC ratio for MB_NCpi0_joint_nubar_1Dcospi0

Data/MC ratio for MB_NCpi0_joint_nubar_1Dppi0

Data/MC ratio for MB_NCpi0_numu_1Dcospi0

Data/MC ratio for MB_NCpi0_numu_1Dppi0

Data/MC ratio for MB_NCpi0_numubar_1Dcospi0

Data/MC ratio for MB_NCpi0_numubar_1Dppi0

