Today in Astronomy 102: Einstein studies gravity

□ The principle of equivalence

- Gravitational time dilation, specialrelativistic time dilation, and the Doppler effect
- Curved spacetime and the nature of tides
- Incorporation of gravity into Einstein's theories: the general theory of relativity

Image: "giant arc" gravitational lenses in the galaxy cluster Abell 2218 (Andy Fruchter et al., Hubble Space Telescope/NASA/STScI).

22 September 2009

2

3

Beyond the Special Theory of Relativity

Astronomy 102, Fall 2009

In 1907 Einstein was asked by the editors of a prominent physics journal to write a review article on relativity. While he was at it, he got to thinking about the **limitations** of special relativity, as well as its successes.

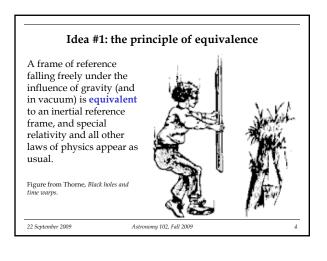
□ Special relativity only applies to **inertial** reference frames, and thus could not be used to describe anything but motion in a straight line at constant speed.

- □ Therefore it could not be applied to situations involving **forces**, such as electromagnetic forces involving charges and currents (though it works well for light), or the force of **gravity**.
- □ Einstein was able to show that no simple modification of the special theory of relativity could fix these problems.

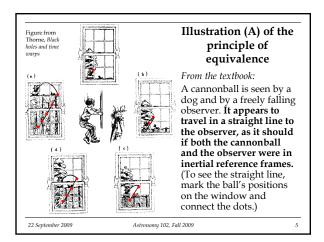
Astronomy 102, Fall 2009

22 September 2009

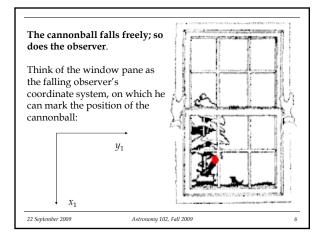
Beyond special relativity (continued)

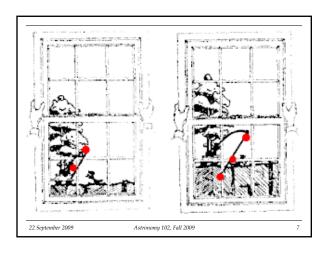

Three new and important ideas occurred to Einstein as he was working on his review article:

- □ If one **falls freely** under the influence of gravity, one feels **weightless**. In this case one's reference frame, though non-inertial, *should* act like an inertial one.
- Gravity *should* itself give rise to time dilation: gravity warps time.
- □ The phenomenon of tides can equally well be conceived as a force, or as a property of curved space: gravity warps space.


These were the first steps in a new relativity theory that could be applied to inertial *or* non-inertial frames.

Astronomy 102, Fall 2009


22 September 2009



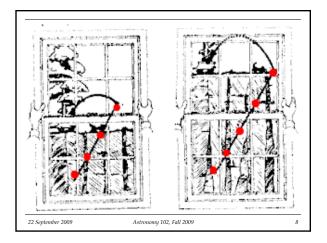
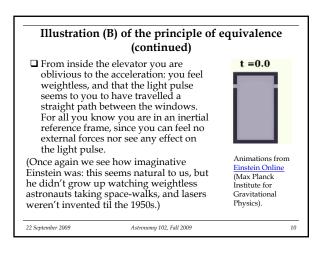


Illustration (B) of the principle of equivalence

Einstein himself thought about it more like this: Suppose you are in a BIG elevator with two small windows. I am watching from the outside, and at t = 0 I cut the elevator cable and send a **pulse** of laser light aimed through the windows.

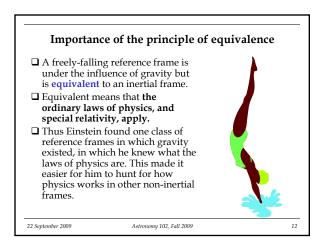
Animations from

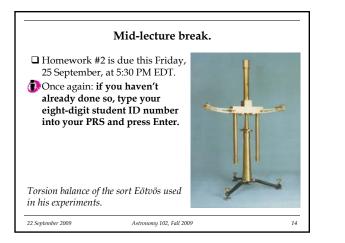

Einstein Online (Max Planck

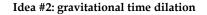
Institute for Gravitational

Physics).

□ I see the pulse go through both windows, and I see pulse and elevator respond to the force of gravity and accelerate toward the ground: the light has energy, so it has mass $(m = E/c^2)$, and will suffer the same gravitational acceleration as the elevator.


22 September 2009 Astronomy 102, Fall 2009

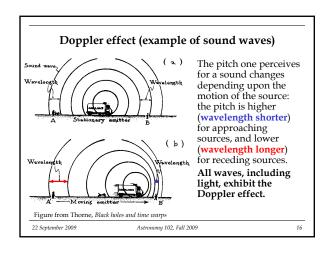

Equivalence of inertial and gravitational mass


Einstein assumed in his thought experiments that any two masses subject to a given gravitational force -- like the elevator and the light - would exhibit the same acceleration.

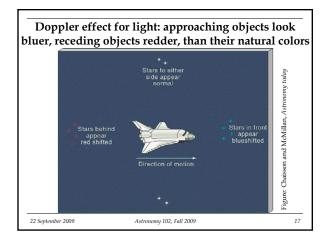
- □ This had been demonstrated in a series of famous experiments (1885-1909) by Loránd Eötvös.
- □ Specifically: Eötvös's experiments showed that inertial mass (the ratio of force to acceleration for forces besides gravity, e.g. that exerted by a spring) and gravitational mass (the ratio of gravitational force to acceleration) are equal within an accuracy of one part in 10⁸.
- This equivalence of inertial and gravitational mass is often called the weak equivalence principle, to distinguish it from Einstein's equivalence principle.
 22 September 2009 Astronomy 102, Fall 2009 11

	PRSs up!	
halfway toward Vega	nip in which the Course Prologue took place, and accelerating at precisely the same rate as the lerating toward the ground. Is this equivalent to a le?	
	noving just as the elevator did. B. Yes, as the C. No, as you feel the force of the spaceship D. No, as Vega's gravity is larger than Earth's.	
pushing on you.		

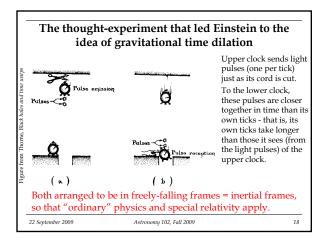
To a distant observer, time appears to pass more slowly in places where gravity is strong.

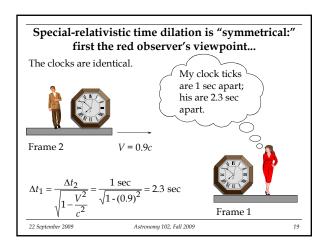

To an observer in a place where gravity is strong, time appears to pass more quickly in places where gravity is weak. □ Both statements embody the idea that **gravity warps time**. □ This sort of time dilation is importantly different from the

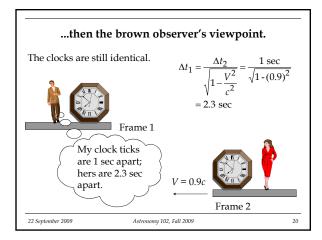
- special-relativistic version of time dilation!
- In special relativity, two observers in inertial frames moving with respect to each other each see the other's clock as moving slowly.

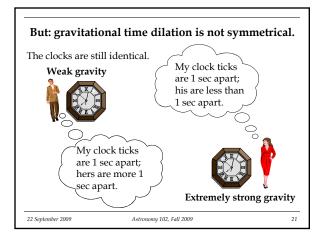

15

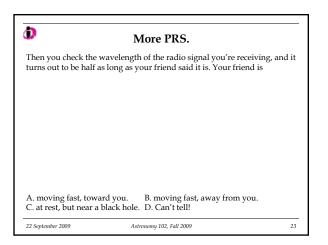
□ Einstein thought of gravitational time dilation as an example of the **Doppler effect**.

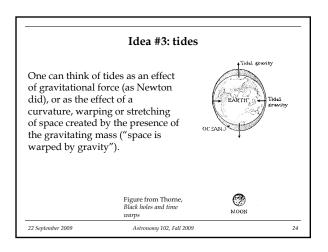

22 September 2009 Astronomy 102, Fall 2009

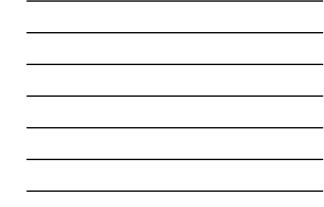


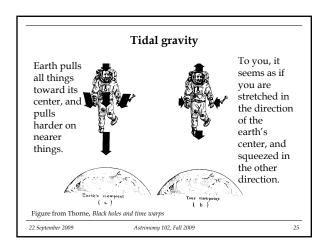




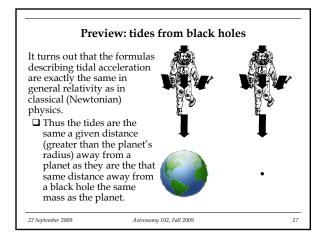








PRS, pls.			
	gnals of clock ticks from a distant friend of your tick interval your friend advertised, you see ther friend is		
A. moving fast, towa	ard you. B. moving fast, away from you. black hole. D. Can't tell!		



Einstein's deductions from these ideas led to the General Theory of Relativity

- □ Particles and light follow **geodesics:** the shortest paths between two points. These are straight lines, if space and time are not curved.
- □ In general, **space and time are warped**, so that the geodesics are not straight lines in general.
- □ Masses and energies present in space and time determine how space and time are warped. This process is what we call gravity.
- The general theory of relativity can be summed up in one statement:

"Spacetime, with its curvature, tells masses how to move; masses tell spacetime how to curve."

22 September 2009

Astronomy 102, Fall 2009

28