How big is that? (Updated 30 August 2009; values supersede those found in our textbooks.) | Diameter of hydrogen atom Diameter of the Moon Diameter of the Earth Diameter of the Sun Diameter of the Milky Way Distance to the Moon Distance to the Sun Distance to the next nearest | 1.06×10^{-8} cm
3.5×10^{3} km
1.3×10^{4} km
1.4×10^{6} km
1.7×10^{5} ly
3.8×10^{5} km
1.5×10^{8} km
4.2 ly | Typical lengths: Normal star diameter Distance between stars Normal galaxy diameter Distance between galaxies Typical masses: Smallest star Normal star Giant star | 10^6 km a few ly 10^5 ly 10^6 ly $0.08M_{\odot}$ $1M_{\odot}$ $10M_{\odot}$ | |---|--|--|--| | Distance to the center of the Milky Way Distance to the nearest galaxy | $2.8 \times 10^4 \text{ ly}$
$1.7 \times 10^5 \text{ ly}$ | Normal galaxy Galaxy cluster Typical luminosities: | $10^{11} - 10^{12} M_{\odot}$ $10^{14} - 10^{15} M_{\odot}$ | | Mass of hydrogen atom
Mass of the Moon
Mass of the Earth | 1.67×10^{-24} gm
7.4×10^{25} gm
6.0×10^{27} gm
2.0×10^{33} gm | Normal star Giant star Normal galaxy | $1L_{\odot}$ $10^{3} - 10^{5}L_{\odot}$ $10^{9} - 10^{10}L_{\odot}$ | | Mass of the Sun Mass of the Milky Way | $(1M_{\odot})$ $3\times10^{12}M_{\odot}$ | Quasar Typical timespans: Planetary revolution | $10^{12} - 10^{13} L_{\odot}$ 1 year | | Luminosity of the Sun Luminosity of the largest | 3.8×10^{33} erg/s $(1L_{\odot})$ | Galaxy rotation Life of giant stars Life of normal star | $10^{7} - 10^{9}$ years
$10^{6} - 10^{9}$ years
10^{10} years | | stars Luminosity of the Milky Way Luminosity of quasar 3C 273 | $10^{5}L_{\odot}$ $2\times10^{10}L_{\odot}$ $10^{12}L_{\odot}$ | Typical speeds: Planetary orbits Stellar motion in galaxy | 10 km/s
100 km/s | | Earth's rotation period Moon's revolution period Earth's revolution period | 8.64×10 ⁴ s
(1 day)
27.322 days
365.25 days | Between nearby galaxies Other important constants: $1 \text{ ly} = 9.46 \times 10^{12} \text{ km} = 9.46 \times 10^{17} \text{ cm}$ | 100 km/s
$1 \text{ Mly} = 10^6 \text{ ly}$
$1 \text{ km} = 10^5 \text{ cm}$ | | Sun's revolution period
within Milky Way
Age of the solar system | (1 year)
$2.4 \times 10^8 \text{ years}$
$4.6 \times 10^9 \text{ years}$ | 1 hour = 3600 s
1 year = $3.16 \times 10^7 \text{ s}$
$\pi = 3.14159265359$ | $1 \text{ erg} = 1 \text{ gm cm}^2/\text{s}^2$ | | Expected life span of the Sun
Age of the Universe
Earth's equator rotation speed
Earth's revolution speed
Sun's speed within the Milky
Way
Milky Way's speed within the
local Universe | 1.5×10 ¹⁰ years
1.4×10 ¹⁰ years
0.47 km/s
30 km/s
250 km/s | Speed of light: $c = 2.99792458 \times 10^5$ km/s = $2.99792458 \times 10^{10}$ cm/s = 1 ly/year Newton's gravitational constant: $G = 6.67 \times 10^{-8}$ cm ³ /(gm s ²) Hubble's constant: $H_0 = 20$ km/(sec Mly) Hubble time: $1/H_0 = 1.5 \times 10^{10}$ years | |