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Astronomy 203 Problem Set #7: Solutions

2 December 1999

1. Gain and gain dispersion in photoconductors. In photoconductors, the photoconductive gain g is in general
different for each photo-generated carrier, and is given by g =t/t0, where t is the length of time the carrier lives
before recombining, and t0 is the transit time, the time it takes an unimpeded carrier to travel all the way
through the detector. Like most decay times (e.g. radioactive decay), t is distributed exponentially, in the sense
that the probability that a carrier lifetime lies between t and t + dt, p(t)dt, is given by

p t dt e dtt tB( ) /∝ −    , (1)

where tB is called the mean lifetime of the carriers.

a. Normalize p(t); that is, find the proportionality constant in Equation (1) that makes the integral of p(t)dt
equal to unity.

Let

p t dt Ae dtt tB( ) /= −    , (2)

and set the integral over all possible t equal to 1:
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So A = 1/tB, and
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b. Show that the average value of g is G = g = tB/t0; that is, that tB really is the mean carrier lifetime.

Using the formula just obtained for p(t),
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(5)

where a simple substitution and integration by parts is done in the second line.

c. Show that the gain dispersion, β = g g2 2/ , is exactly equal to 2.

The numerator of this expression is
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where again a simple substitution and integration by parts appears in the second line, and the
results of part b were used. With this,

β = =
g
G

2

2 2   . (7)

2. Coherent detection vs. incoherent detection. Suppose you have five detectors, working at wavelengths 1 cm,
1 mm, 100 µm, and 10 µm, that are capable of quantum-limited heterodyne detection or background-limited
direct detection in a diffraction-limited beam and in relative bandwidth ∆ν/ν = 10-4. (Never mind whether or
not this is possible!) Suppose that the product of cold optics transmission and quantum efficiency is 0.2, and
that G = =β 1  in each case. You use each mode of each detector to observe a 1 arcsec diameter, 1000 K object,
with a 1 m diameter room temperature (300 K) Cassegrain telescope that has 20% of the primary’s aperture
blocked by the secondary (that is, its emissivity is 0.2). You observe in each case until a signal-to-noise ratio of
10 is achieved. How long does each of the eight measurements take? Plot the elapsed exposure time, as a
function of wavelength. (You'll find it most convenient to display these results on a log-log plot.) Over what
range of wavelengths is direct detection significantly more sensitive than heterodyne detection?

The only real difficulty of this problem is to make sure that apples are compared to apples: one must
remember that the heterodyne receiver we have discussed in class detects only a single mode (one
polarization and AΩ = λ2), but detects two IF sidebands. We therefore must restrict the direct detector
to a single polarization and a diffraction-limited beam, and restrict the heterodyne receiver to
intermediate frequencies of half the resolution bandwidth ∆ν , so that both systems are exposed to the
same power.

The angle θ = 1 arcsec is small compared to the FWHM widths of all of the diffraction-limited beams
we're considering here, so the incident power from the source is
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where Bν(T) is the Planck function, TS = 1000 K, and the factor of ½ represents the polarization
restriction. The heterodyne signal-to-noise ratio is
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where, N N TB= ( )  is the photon mode occupation number at the background temperature (300 K).
For the direct detectors, we have



Astronomy 203/403, Fall 1999

 1999 University of Rochester 3 All rights reserved

S

N
P

t

h P N
P

t

h N N
S

D

B
S

D= −
+

= −
+

1
1

1
1

1

1
2 2

ε τη
β ν τη

β
ε

ε τη
β ε ν ν τη

β
ε

b g b g∆ ∆
∆

, (10)

where we have noted that the detector receives background radiation in a single mode, to match that
assumed for the heterodyne detector. Solving for tD and tH, with S/N = 10, and accounting for double-
sideband response in the heterodyne receiver, we get:
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Note that at very long wavelengths, at which N >>1, the times converge to the same value, one that is
independent of properties of the detectors and cold optics:
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as they must; for very long wavelengths the noise is dominated by background fluctuations, rather
than photon noise. Putting in the numbers, we get

These results are plotted in Figure 1. Three important features of coherent and incoherent detection
are evident in this figure. First, the observations at the longest wavelengths take a very long time
(about three months). Next, the integration times for the two techniques approach each other at long
wavelengths. Finally, the integration times diverge dramatically at short wavelengths; direct
detection gets faster monotonically with higher frequency, and heterodyne detection actually reaches
a minimum. Direct detection is significantly better that heterodyne detection at wavelengths less than
about 300 µm. Both of the latter effects are due to the dependence of N  on T: it is very large at 1 cm,

but very small at 1 µm. The rms photon noise is N N + 1d i , and thus keeps getting smaller with

shorter wavelengths; however, coherent detection involves quantum noise in the amount (∆N)rms = 1
(§23.2-3), and this makes a huge difference at short wavelengths.

Wavelength
(µm)

tH (s) tD (s)

1 1.9×103 1.2×10-19

10 6.4×10-4 2.1×10-7

100 1.7×10-1 1.0×10-2

1000 4.3×102 1.9×102

10000 1.1×107 1.0×107
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Figure 1: Exposure time as a function of wavelength, as required for S/N = 10 on a 1”
diameter, 1000 K blackbody with a 1 m diameter telescope, using coherent and
incoherent detection.

3. Background-limited spectrometers. You are given a collection of spectrometers that work in the 5-40 µm
range with a spectral resolution of ∆ν/ν = 1/1000 and (cold) instrumental transmission τ = 0 15. , and with
detectors that have quantum efficiency 0.3 and unit photoconductive gain. You can use them either on the
airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) or the satellite-borne Space Infrared
Telescope Facility (SIRTF). SOFIA is an ambient-temperature telescope (270 K), 2.5 meters in diameter, and
10% of its area is obscured. SIRTF is cryogenic (< 5 K), and is in space, so the only source of background is the
zodiacal light. The zodiacal light can be thought of as a superposition of two low-emissivity blackbodies, one
with ε = × −3 10 8  and temperature 285 K, and the other with ε = × −2 10 7  and temperature 200 K, for this
range of wavelengths. SIRTF’s primary mirror is 85 cm in diameter. Diffraction-limited beams are used.
Compare the NEP of these spectrometers used for observation of point objects on SOFIA and SIRTF, at
wavelengths 5, 10, 20 and 40 µm.

SOFIA has warm optics with transmission 1 - ε = 0.9, which therefore emit a background power given
by
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/ , (13)

in a diffraction-limited beam (total AΩ=4λ2), where TB is the temperature of the telescope. The
zodiacal emission is present, but is vastly smaller than this because the emissivities are so small
compared to ε = 0.1, and can therefore be neglected. The background-limited NEP is
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where as usual η = 0.3 is the quantum efficiency, τ =0.15 is the transmission of the cold optics, β is the
gain dispersion (assumed to be 1), and N  is the photon mode occupation number appropriate for the
given frequency and the temperature of the telescope. Putting the numbers in from above, we get:
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For SIRTF, there are no warm optical components to emit background, and therefore no 1/1-ε term
out in front of the expression for NEP. Also, the values of ε and N  for both of the zodiacal light
components are very small, and therefore ητεN  ? 1; we can ignore this term in the NEP. Thus
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b g

/
, (16)

where the PBs are the power emitted by the two zodiacal light components, obtained from the
expression above but with the appropriate emissivities and temperatures, and where now τ = 0.15×0.9
= 0.135, since the transmission loss from the obscured part of the telescope is now in the cryogenic
part of the system. Putting in all of these numbers again, one obtains
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A spectrometer on SIRTF is therefore more than 1000 times more sensitive (NEP is a factor of 1000
smaller) than the same spectrometer on SOFIA. This means that any given observation would take
more than 1,000,000 times longer on SOFIA than on SIRTF. Now you know why we are so anxious to
have a cryogenic infrared telescope in space.

Note that to make this comparison we have tacitly assumed that we were to observe objects for which
the same power were contained within the two different diffraction-limited beams; since those beams
differ in diameter by a factor of about 3, we really mean point sources. The comparison would be
slightly different for extended sources, but SIRTF would still be the more sensitive instrument, by
orders of magnitude.

By the way, the emissivity and temperature components given above for the zodiacal light were
derived from observations by IRAS and COBE, and pertain to the minimum of the zodiacal emission,
at the ecliptic poles. The emissivity of each component is larger by about a factor of three for
directions closer to the plane of the solar system.

4. The characteristic matrix and energy conservation.

a. Show that the determinant of the characteristic matrix is unity.

For any single dielectric layer,
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You have learned in Math 164 (I hope) that the determinant of the product of two nonsingular
matrices is equal to the product of their determinants (see, e.g. B. Kolman, Elementary Linear
Algebra [London: Macmillan, 1970], pp. 136-137, if I’m wrong); thus the characteristic matrix of a
stack of dielectric layers is also unity.

b. Show that r Y t Yp
2

1
2

0 1+ =+ / , where the amplitude reflection and transmission coefficients r and t are
given by Equations 25.28 and 25.29.

Let’s first define
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for convenience; then, M ad bc= + . Let’s also consider the Y factors to be real numbers; this
amounts to a claim that the index of refraction is real for each layer, which in turn implies that
there is no absorption. In these terms, the amplitude transmission and reflection coefficients are
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But M ad bc= + = 1 , so
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in fact, since r Y t Yp
2

1
2

0 1+ =+ / , multiplied by cEI
2 8/ π , embodies energy conservation, the

result of part a can be said to be demanded by energy conservation.

5. Antireflection coatings.

a.  Calculate and plot the transmission of a 5 µm thick wafer of diamond (n = 2.4) over the visible wavelength
range, λ µ= −0 35 0 7. .  m .
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b. Repeat the calculation and plot with a layer of MgF2 (n = 1.38) on each face, with thickness equal to a
quarter of a wavelength for incident light at λ µ= 0 5.  m .

These calculations can be done in one fell swoop. With vacuum on both sides of the diamond, Y =
1 outside it. The characteristic matrix of the diamond wafer is
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If on the other hand the wafer is coated, the characteristic matrix of the combination is the
product of the characteristic matrices of the coating layers and the wafer:
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In either case, the amplitude transmission coefficient is given by Equation 25.28,
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and the power transmission coefficient by
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Y
Y

t t2

0

2 2 .

The matrix multiplication, calculation and plotting are easily done in Mathcad. You can use a
spreadsheet like Excel to do it, too, but then you must multiply the matrices yourself. Note that
the transmission peaks are evenly spaced in wavenumber but not wavelength. Note the
significant improvement in the average transmission of the wafer, owing to the antireflection
coatings.
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Figure 2: transmission of diamond wafer with bare surfaces (top) and with quarter-wave
MgF2 coatings (bottom).


