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Astronomy 203 Problem Set #8: Solutions

10 December 1999

1. A pressure-scanned Fabry-Perot interferometer. At normal atmospheric pressure and room temperature,
the index of refraction of CO2 is 1.0045. At the same temperature and a pressure of 4 atmospheres, the index is
1.0180. For constant temperature, the index varies linearly with pressure between these extremes. Using a few
complete sentences, suggest a way of using this effect to tune a Fabry-Perot interferometer. For a pressure
varying between 1-4 atmospheres, and an interferometer with spacing 0.3 cm and finesse Q = 30, operating at a
wavelength 0.55 µm, what range of wavelengths is covered by the scan? Which Fabry-Perot order is used? How
many FWHM resolution elements are contained in the scan? (Many high-resolution, visible-wavelength Fabry-
Perot spectrometers employ this principle.)

Because constructive interference in a Fabry-Perot is obtained for 2ndcosθ = mλ, increasing the index
of refraction n does the same thing as increasing the mirror separation d − that is, it moves the orders
to longer wavelengths. Thus one can scan the interferometer by varying the pressure instead of the
distance. For normal incidence (θ = 0), the change in order wavelength δλ produced by a change in
index δn is given by
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for the wavelength and index change given above. This effect is very useful for high-resolution
spectroscopy even though 0.0074 µm doesn't seem like the spectrometer covers much of the spectrum.
At the given wavelength and mirror separation and at atmospheric pressure, the interferometer is in
m = 2dδn/δλ = 10,900th order, and the FWHM resolution is ∆λ = λ/mQ = 0.0000017 µm, so the
pressure scan up to 4 atm moves the order in use by about 4400 spectral resolution elements.

2. Beam size and spectral resolution of a Fabry-Perot. An incoherent detector looks through a Fabry-Perot
interferometer at normal incidence, with a beam of small angular radius θ.

a. Show that the detector is therefore sensitive to a range of wavelengths, varying from λ = 2nd/m to λ' =
2nd(1 - θ2/2)/m, and that a wavelength resolution element can therefore be no smaller than

∆λ λ θ=
2

2
.

We will refer to this result as the beam-divergence limit to the spectral resolution of a Fabry-Perot
interferometer.

Constructive interference takes place when 4πndcosθ'/λ = 2πm, where θ' is the incidence angle
for light between the reflectors, and where the refractive index is n. If a range of incidence angles
is used to illuminate the Fabry-Perot, therefore, constructive interference will be obtained for a
range of wavelengths for a given order m and a fixed reflector separation d. If the incidence angle
is small (cosθ' ≈ 1 - θ'2/2), this range of wavelengths ∆λ transmitted by the Fabry-Perot is given
by
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Assuming the index of refraction to be the same inside and outside the Fabry-Perot, θ' = θ. Note
that if the index between the reflectors is larger than it is outside, θ' < θ, and ∆λ is smaller for the
same beam angular radius.

b. Suppose you wanted to have the beam be 0.1 radian (5.7°) in radius. For a Fabry-Perot with a finesse of 20,
what is the highest order number you can use before the beam-divergence limitation on the spectral
resolution is equal to the reflectance-limited resolution?

In other words: in which order is the transmitted range of wavelengths equal to the FWHM
reflectance-limited width? The former is given by ∆λ = λθ2/2, the latter by ∆λ = λ/mQ, so they're
equal for m = 2/Qθ2. With the parameters we're given here, m = 10.

c. Suppose further that you really need better spectral resolution than that. Suggest an optical configuration
for the Fabry-Perot that will overcome the beam-divergence limitation.

If we need higher resolution, we can get it by using a higher order of the Fabry-Perot − but not in
the present optical configuration, since for any order m > 10 the transmitted range of wavelengths
is dominated by the beam-divergence limit. To reduce this effect, one needs to use lenses to re-
focus the beam through the Fabry-Perot so as to give a smaller angular radius (see Figure 1). The
best job is done by collimating the beam and placing the Fabry-Perot in the collimated part of the
optics. It doesn't need absolutely to be collimated (angular spread = 0), though; we just need for
∆λ from the beam divergence to be much smaller than ∆λ from the reflectance, or θ2 << 2/mQ.

Figure 1: the Fabry-Perot on the right can be used to obtain higher spectral resolution
than the one on the left, since the beam it transmits has a smaller angular radius.

3. Diffraction grating measurements of the sodium D-lines (λ = 0.58959, 0.58900 µm).

a.  A diffraction grating has 104 rulings uniformly spaced over 2.5 cm. It is illuminated by yellow light from a
low-pressure sodium-vapor lamp, at normal incidence. At what angles will the first-order maxima occur for
these lines?

For an incidence angle of zero, asinθm = mλ. Here a = 2.5 µm , and the first-order angles work out
to θm = 13.641° for the 0.58959 µm line and θm = 13.627° for the 0.58900 µm line.

b. How many rulings must a diffraction grating have in order barely to resolve them in third order?

The resolution of a grating in mth order is ∆λ/λ = 1/mN, and if the lines are barely resolved, then
∆λ is equal to the difference between the wavelengths of the two lines, or 0.00059 µm. Thus N =
λ/m∆λ = 333 rulings.

c. In a particular grating the D-lines are viewed in third order at 80° to the normal and are barely resolved.
How far apart are the grating rulings?
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For normal incidence, a = mλ/sinθm = 1.8 µm.

4. Grating spectrometer design. Taking the limits of the visible spectrum to be λ = 0.43 - 0.68 µm, design a
grating that will spread the first order spectrum through an angular range of 20°. Use any incidence angle you
like. Report the incidence angle, the range of diffracted angles, and the proper blaze angle.

There are as many correct ways to do this as there are angles of incidence. Let's do normal incidence
first. What we want is for the shortest wavelength of the range, say λS = asinθm, to wind up ∆θ = 20°
away from the longest wavelength, λL = asin(θm+∆θ). We just need to solve these two equations for a
and θm. The latter can be obtained from the ratio of the equations:
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where we have used a trig identity, sin(A+B) = sinAcosB+cosAsinB. Solving this for θm, we get

θ θ
λ
λ

θ
m

L

S

=
−

F

H

GGG

I

K

JJJ
= °arctan

sin

cos
.

∆

∆
28 (4)

So λS=0.43 µm comes out at θm=28°, and λL=0.68 µm comes out at θm=48°. Either of these pairs
determines a = λ/sinθm = 0.91 µm. The blaze angle should be such that the ruling normals bisect the
incident and outgoing angles; one would probably therefore blaze the grating for the central angle of
θm=38°, which gives a blaze angle γ = (θm-θi)/2 = 19°. A diagram of the finished grating configuration
is shown in Figure 2.

Figure 2: a grating configuration that spreads the first order visible spectrum through
20 .
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We might have tried to use a Littrow configuration (θi = -θm) instead. If we did, and tried to get the
extremes of the wavelength range to come out ±10° from the optical axis, we would have wound up
with an incident angle of 21.2°, a blaze angle also of 21.2°, and a ruling spacing of 0.77 µm. See Figure
3 for a diagram of this alternative.

5. The entrance slit of a grating spectrometer. Consider a telescope with a grating spectrometer, as shown
schematically in Figure 4. The telescope has diameter D and focal length F, the grating-spectrometer collimating
mirror has diameter d and focal length f, and the light can enter the spectrometer through a slit of width x. The
spectrometer is in Littrow mode θ θm i= −b g.

a. If x is not zero, the “collimated” light hitting the grating has some angular spread. Explain why, and show
that the angular spread is given by ∆θ = x f/ , and thus that the resolution of the spectrometer is
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— that is, you can make the resolution better by making x smaller.

A wavelength interval in diffracted light, ∆λ , is related to its range of diffraction angles ∆θm by
the dispersion:
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Figure 3: another grating configuration (Littrow) that spreads the first order visible
spectrum through 20°.
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The collimator/camera has a plate scale given by 1/f, so the range of angles ∆θ i  corresponding to
a range of distances x in the focal plane is simply ∆θ i x f= / . For a given wavelength λ  the range
in diffracted angles ∆θm produced by the range in incidence angles is obtained as follows:
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In particular, at the wavelength λm  for which θ θi m= − , m am m i iλ θ θ θ= − = −sin sin sin2 , so
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But θ i  doesn’t depend upon λ , so the dispersion d dmθ λ  is still given by Equation 27.8:
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This applies to wavelengths near λm , as assumed in going from Equation (6) to Equation (7).

b. Of course, diffraction prevents you from making x arbitrarily small. Show that the smallest x is allowed to
be is 12. /f dλ , and therefore that the smallest ∆λ λ/  can be is

∆λ
λ

= 12.
.

mN

Since the beam has a finite diameter d, and is circular, the FWHM angular spread from diffraction
is ∆θ λm d≅12. / , no matter what goes on in the focal plane. For a plate scale of 1/f in the focal
plane, the diffraction spot has FWHM diameter x f d≅12. /λ . Transmission of light to the grating,
and thence to the focal plane, from a slit smaller than this does not reduce the angular range in
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Figure 4: optical setup for Problem 5.
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the way suggested by the result from part a — that just lets less light through. Thus the smallest
∆λ  can be is that given by a diffraction-limited slit width, x f d≅12. /λ :
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since the length of the grating is Na d di m= =/ cos / cosθ θ .

c. Suppose you want the slit to match the image size from the telescope's beam, an angle φ in size. Find an
expression for the resolution, in terms of φ, D, and d. (This, and the previous result, show how one
“matches” a grating spectrometer to a telescope.)

The telescope has plate scale 1/F, so an angular range φ corresponds to a width Fφ in the focal
plane. By the same token, the focal plane width Fφ corresponds to an angular spread ∆θ φi F f= /
in the collimated beam. Thus, from part a,
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where we have used the relation D/d = F/f, obvious from the geometry in Figure 4.


