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2. Lecture, 7 September 1999

2.1 Rays and Snell’s Law

The first part of the job of an observational astronomer is to collect the light from a celestial source –
incident on the earth in the form of plane waves – and concentrate it on a detector, making the
wavefronts converge there. One can focus light in this fashion, of course, by the use of curved dielectric
or conducting surfaces. Here we discuss the simplest way to prescribe the surfaces that would be
required for a given focusing task.

In your E&M classes, you have learned (or will learn) how to treat the
propagation of a plane electromagnetic wave incident upon a plane surface
dividing two dielectric or conducting media, and solve for the resulting
wavevectors and electric field amplitudes of transmitted and reflected light.
The directions of the wavevectors are given by Snell's Law and the mirror-
reflection rule, illustrated in Figure 2.1:
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where the angles θ between the wavevectors and the normal to the surface
are taken to be positive if measured counterclockwise from the normal, and
the refractive indices ni and nt are, in general, complex. We can use these
expressions to deal with curved wavefronts and non-planar surfaces by
considering separate, infinitesimal sections of wavefront and surface, on
which scale everything is flat. The infinitesimal section of wavefront is
generally represented graphically by the wavevector appropriate to that
point on the wavefront, or even more conveniently, simply by the direction of that wavevector. We call
this representation a ray.

A given ray is incident on a specific point on an interface; we can deal with the transmission or reflection
of this ray by considering the properties of a plane wave incident on the plane surface tangent to that
point. Ignore for the moment the fact that only a fraction
of the power is transmitted, in general, at each interface
(the rest getting reflected or absorbed). The propagation
of a wave through a surface can then be described by the
propagation of an appropriate bundle of rays, acting in
accordance with Snell's Law and the mirror-reflection
rule. The relationship between wavefronts and rays is
shown in Figure 2.2 for a spherical wave. If we are
interested in the nature of the wavefront, we can
reconstruct it from the rays; it is a locus of points
perpendicular to the rays, lying a given number of
wavelengths along the rays from some reference surface
at which the wave’s phase was constant. (The latter
requirement guarantees that, for example, a wavefront
corresponding to a peak in the wave amplitude remains
a peak.)

Figure 2.1: reflection and
refraction.

Figure 2.2: Expanding spherical wavefronts
(the circles denoting peaks in field
amplitude) and their ray representation.
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2.2 Paraxial rays

The use of the ray formalism is illustrated well in the following
simple example. Consider a point source of light (emitting
spherical waves), located at point O in Figure 2.3, and a concave,
spherical reflecting surface whose apex lies a distance o away from
the O. What does this mirror do to the light? It focuses it, of
course, and we can follow the rays to find out where the focused
image lies.

Let's follow two different rays that start at O, one passing through
the center of the sphere, C, and striking the sphere's apex, V, and
the other striking the mirror at point A. The first of these follows a
radius, since it passes through the sphere's center. The plane
tangent to the sphere at its intersection with a radius is perpendicular to that radius, so this ray must
reflect right back on itself (θi = θr = 0). By the same token, the dashed line bisects the angle OAI (so that θi
= -θr = θ). This, and the fact that the sum of the angles of a triangle is π, gives us the following two
relations between the angles in the figure:

α θ β
α θ γ

+ =
+ =2

    . (2.2)

Eliminating θ from these two equations, we find an expression that holds for all of the rays leaving O that
encounter the mirror:

α β γ= −2 ⇒α γ β+ = 2     . (2.3)

We now make an approximation. Suppose that all of the angles in Figure 2.3 are small enough that the
arc-length AV can be used for their radian measure. This means that we only consider rays that are close
to the line through the axis OCV of the system; these are therefore called paraxial rays, and this invocation
of the small-angle approximation is known as the paraxial limit. If the sphere has radius r,

α ≈ AV
o

    β ≡ AV
r

    and    γ ≈ AV
i

    . (2.4)

Putting these into the previous equation, and canceling the common factor of AV, we have

1 1 2
o i r

+ =     . (2.5)

What we have found here is the location of the intersection of our two rays. Note, however, that the result
for the distance i is independent of the location of point A, as long as the small-angle approximation is
valid. Thus all such rays leaving O and hitting the mirror pass through I: the light is focused there. This
form of focusing is called a real image; real, because a detector placed at that point would detect light. In
addition, all of the rays passing through point I diverge from it just as they would if they were coming
from a real point source, so to an observer looking at the mirror, there would appear to be a light source
there.

If the light source were very far away, so that the rays encountering the mirror would be essentially
parallel to one another, we would expect them to reflect through the mirror’s focal point. Thus we can get

Figure 2.3: Concave spherical
mirror.
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the focal length of the mirror by deriving the
distance from the mirror’s apex at which the
paraxial rays intersect, for a very large object
distance:
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.

(2.6)

The fact that paraxial rays from a point object all
focus to a point image is in itself very useful, and
it forms the basis of the simplest approach to
geometrical optics, which most workers use as a first approximation to any optical system they design:
the paraxial theory of thin*, spherical-surface, lenses and mirrors. Consider a convex spherical mirror, in
the same situation as the previous example (Figure 2.4). Once again, we consider two rays originating in a
point source of light, one aimed at the apex and center of the sphere, and one at an off-center point. The
axial ray reflects back upon itself again, since it is normally incident on the spherical surface. The other
ray, incident at angle θ, leaves the picture deviated by an angle γ from the axis. This time they do not
intersect, but the reflected rays appear to diverge from a point a distance i from the sphere's apex V. The
relations between the angles in Figure 2.4 are now

α β θ+ =     and    α γ θ+ = 2     , (2.7)

whence α γ β− = −2     . (2.8)

Restricting ourselves to the paraxial rays, we can once again use the arclength AV in the radian measure
of the angles (α ≈ AV/o, β ≡ AV/r, γ ≈ AV/i) and obtain

1 1 2
o i r

− = −     . (2.9)

An observer looking at the reflected paraxial rays would thus see an image, located at point I, but since
light doesn't actually converge there, a detector placed there would not detect anything. This sort of
image is called a virtual image.

The equations relating o, i and r for concave and convex spherical mirrors can be combined into a single
expression if we introduce a sign convention. We can work out image and object positions for either
situation if we agree to use the following rules:

1 1 1
o i f

+ =     (the thin mirror  or thin surface equation); (2.10)

f = r/2    for spherical mirrors; (2.11)

                                                          

* By thin we mean that the surface normals always make small angles with the optical axis.

Figure 2.4: a convex, spherical mirror.
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    for virtual objects (more on these later) and images;
    for real objects;

       for diverging (convex) mirrors;
       for converging (concave) mirrors.

(2.12)

Similar steps can be taken to obtain the relationship among o, i and r for a spherical surface bounding two
dielectric media. Consider the situations, shown in Figure 2.5, of dielectric media with refractive indices
n1  and n n2 1> . For the convex surface (Figure 2.5 a) we would find that
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1 2 2 1+ =
−     , (2.13)

and for the concave surface,
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1 2 2 1+ = −
−     , (2.14)

from which in either case we can define a focal length (the image distance corresponding to o→∞) given
by

f n
n n

r=
−
2

2 1
    . (2.15)

subject to the sign convention r > 0  for the convex shape and r < 0  for the concave one. This is opposite
the convention just established for mirrors, but makes sense in terms of the usual applications of
converging and diverging lenses, as we shall see.

Figure 2.5: a (left) a convex spherical dielectric; b (right) a concave spherical dielectric.

Homework Problem 1.1. Show that Equations 2.13-15 are obtained for the convex and concave dielectric
surfaces shown in Figure 2.5.
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2.3 Thin lenses

Now suppose that the convex spherical
dielectric surface we just considered is followed
immediately by another surface, also spherical
and with center and apex (a distance d from the
first surface’s apex) lying along the original
optical axis. If the index returns to the value n1

following this surface, and if n2 > n1, then this is
just the familiar situation of the lens, as shown
for a biconvex shape in Figure 2.6. We would
like an account of the effect of the second surface
on the position of the focus, independent of the
algebraic signs of the radii of curvature and n2 -
n1. We could find one out by tracing rays
geometrically, as we have been, but within the
paraxial approximation we could also use Equation 2.13, and employ the image formed by the first
surface as the object for the second.

According to our previous results, equations 2.13 and 2.15, we can write, for the position of the image (I)
formed by the first surface in the absence of the second,
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and, for the second image (I),
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The position of the first image is

i
n of

n o n f
=

−
2 1

2 1 1
    . (2.18)

Now let’s introduce the thin lens approximation:  assume that the lens thickness d is much smaller than any
of the object or image distances. Then the magnitude of the second object distance o’ is equal to that of the
first image distance i. Depending upon the sign of f1, the first image will be virtual or real. If virtual (i < 0),
the image lies to the left of the second surface, the normal situation for an object, and to take account of
the sign of i we must write ′ = −o i . If on the other hand the image is real (i > 0), it lies to the right of the
second surface; light has not reached a focus before the second surface is encountered. In this case the
first image would be a virtual object to the second surface, for which its distance to the apex, o’, needs to be
entered in Equation 2.17 as a negative number; since i is positive, ′ = −o i  once again. Equation 2.17
becomes

− +
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2
    , (2.19)

which according to Equation 2.18 can be written as

Figure 2.6: Biconvex lens: front surface with radius r1

(> 0), second surface with radius r2 (< 0).
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We can find the focal length of the system, by taking o → ∞ . The reciprocal, however, has a simpler form:
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    . (2.22)

With n1 = 1 (the refractive index of vacuum), this equation is called the lensmakers’ formula. With this
definition of focal length, the thin lens with two spherical surfaces focuses or diverges light according to

1 1 1
o i f

+ =     , (2.23)

the same expression as we obtained for spherical mirrors in the paraxial approximation. In its present
incarnation this is called the thin-lens equation. It is, of course, the same as the thin mirror equation, and
since we have explicitly used the sign conventions we had before (Equations 2.12), those still apply as
well.

2.4 Use of the thin lens equation

The process of using the image formed by one optical element as the object for the next is the
fundamental problem-solving method offered in the paraxial approximation, and can be used for any
sequence of mirrors and lenses, as follows.

Example 2.1
An object is placed a distance in front of a converging lens equal to twice the focal length f1 of the lens. On the other
side of the lens is a concave mirror of focal length f2 separated from the lens by a distance 2(f1 + f2). Find the location
of the final image.

The first object distance is o1 = 2f1, so by solving Equation 3.8 we find the first image at

i
o f

o f
f1

1 1

1 1
12=

−
=     .

This image is now o2 = 2f2 in front of the mirror, so

i
o f

o f
f2

2 2

2 2
22=

−
=   .

This image is on the same side of the mirror as the first image; in fact, it's in the same place. Now this
second image is o3 = 2f1 from the lens and the rays are heading toward the lens again:
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This is the final image, and it winds up at the same location along the axis as the original object.

Example 2.2
Consider two thin lenses in vacuum, with focal lengths f1 and f2, separated by a distance d. Obtain expressions for
the position of the image for arbitrary object distance, and for the effective focal length of the combination.

For an object at distance o, the first lens would produce an image at distance i, given by solution to thin-
lens equation:

i
of

o f
=

−
1

1
    .

The situation and status of the first image/second object is the same as we encountered above with the
thick lens, and the result is the same: no matter which side of the second lens the first image falls, the
second object distance amounts to d i− , so the final image distance is given by
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From this one may obtain the effective focal length by moving the object to large distances:

f i
f d f

f f do
= ′ =

−
+ −→∞

lim 1 2

1 2

b g
    . (2.24)

Since it is a limiting value of the final object distance, this effective focal length should be measured from
the second lens. Following directly from this result is the useful case of two thin lenses in contact (d = 0):

f
f f

f f
=

+
1 2

1 2
    , (2.25)

which can be used to expand considerably the choices of focal lengths available from a limited collection
of thin lenses.

2.5 Off-axis objects and images

So far we have considered only point objects lying on the optical axis. Suppose we have instead an
extended object; what does its image look like? The geometry of this situation is easy to sketch if you
apply two simple facts about lenses, mirrors and their foci, that are implicit in our discussion above.

1.  Rays incident parallel to the optical axis are refracted or reflected through a focus; rays incident through a focus
emerge parallel to the optical axis. This is another way to phrase the definition of the focal point; rays
from a very distant object lying along the optical axis all intersect at the focus, and the process works
in reverse as well.
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2.  Rays incident on the center of the mirror reflect with the same angle with respect to the optical axis that they
had before; rays incident on the center of a lens pass through without deviation. The first part of this
statement owes its truth to the fact that the tangent to the mirror’s surface is perpendicular to the
optical axis in the center. In the case of the lens, the front and back surfaces are parallel at the center,
so since the lens is thin the ray is neither deviated nor displaced.

These considerations provide two or three rays to draw that can determine the position and orientation of
an image; two are sufficient. The way it works is to start rays from one off-axis point on the object, and
send them through the lens in the ways prescribed; they will intersect at the corresponding point on the
image, for example, as shown in Figure 2.7.

From the second of these simple considerations above also follow two trivial results of importance for
optical elements: the lateral magnification of images and objects at finite distances, and the plate scale for
objects at very large distances. Consider first the object, image and lens in Figure 2.7. Since rays incident
on the center of the lens pass through undeviated (i.e. its angle θ with respect to the axis is the same on
both sides of the lens), the transverse extent of object and image are related to the object and image
distance by:

h
o

h
i

h
h

i
o

o i

i

o

= =

=

tan ,

.

θ

or    
(2.26)

Real objects and their real images have positive object and image distances (as in Figure 2.8) and are
inverted with respect to each other, while virtual images of real objects have the same orientation. The
lateral magnification m is thus defined with a minus sign:

m h
h

i
o

i

o
≡ − = −     ; (2.27)

m < 0 if the image is inverted, and m > 0 if it is erect.

Figure 2.7: off-axis images. Mirrors are on the left and lenses are on the right; positive
focal lengths are illustrated at the top and negative ones underneath.
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Example 2.3
A luminous object and a screen are a
fixed distance L apart.

a. Show that a converging lens of
focal length f will form a real
image on the screen for two
positions of the lens, that are
separated by

= −L L f( )4   .

(This comprises a nice way to
determine the focal length of a
converging lens; solve the
expression for f, and insert
measurements of  and L.)

For the image and object to be a distance L apart, we need i + o = L. We also have

1 1 1

i o f
+ =   ,

or i
of

o f
L o=

−
= −   .

Multiplying through and solving for o, we get

o Lo Lf

o
L

L fL

2

2

0

2

1

2
4

− + =

= ± −
  .

The distance between the two lens positions is the difference of these two values of the object
distance:

= + − − + −

= − = −

L L fL L L fL

L fL L L f
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4 4

2 2

2 ( )
  .

b. Show that the ratio of the two image sizes for these two positions is

L
L

−
+







2
  .

For the first object position,

o L L fL L
1

2
2

1
2

4
2

= + − =
+   ,

Figure 2.8: lateral magnification.
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the image distance is

i L o L o1 1 22
= − =

−
=   .

Similarly, i2 = o1. The ratio of magnifications is therefore

m
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o
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L
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2
2
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2

2
= × = = −

+




   .

Example 2.4
A short linear object of length d lies along the axis of a spherical mirror of focal length f, a distance o from the
mirror.

a. Show that its image will have length ′d , where

′ =
−







d d

f
o f

2

  .

Since the object and image are presumed to be small compared to o, i and f, we can write

′ = = − = −d i di
do

o di
do

d∆ ∆   ,

where the minus sign represents the fact that the near (far) end of the object corresponds to the
far (near) end of the image. Since the thin-lens equation can be expressed as i = of/(o-f),

( )
di
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d
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o f
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o f

of

o f
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 =
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  ,

or

′ = ′ =
−







m d

d
f

o f

2

  .

b. Show that the longitudinal magnification, ′ = ′m d d/ , is equal to m2, where m is the lateral
magnification (in Equation 2.27).

The lateral magnification m is given by

m i
o o

of
o f

f
o f

= − = −
−







 = −

−
1   ,

so m
f

o f
m2

2

=
−







 = ′   .

c. Is there any condition such that, neglecting mirror defects, the image of a cube would also be a cube?
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For the image of a cube to look like a cube, the longitudinal and lateral magnification either have
to be equal or opposite:

m m m= ± ′ = ± 2   ,

or m = ±1   .

The lateral magnification, again, is

m
f

o f
= −

−
  ,

so the two possible values for lateral magnification correspond to two object distances:

o f
f
m

f= − = 0 2or

for m = 1 and m = -1, respectively. With an object distance of 2f, the image of a small cube looks
like an inverted cube of the same size. The other object distance doesn't represent a practical
situation. It corresponds to placement of an object at the center of a mirror, which violates the
assumptions made in the derivation of the thin mirror/lens equation.
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