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4. Lecture, 14 September 1999

4.1 Introduction to analytical ray tracing

Light travels in a straight line until it encounters a surface, at which point its direction – and in general its
amplitude – is changed and it proceeds further. The prescription of an optical system consists of the
specification of the positions and shapes of all of its surfaces, and the nature of the medium into which the
rays pass after they leave each surface. As complicated as this specification process is, repeated
application of three principles, plus coordinate transformations and other aspects of algebraic
organization, are sufficient to follow a given ray, or bundle of rays, all the way through an optical system
to a final focus. These principles are simple results of the physics of reflection and refraction from planar
dielectric and conducting surfaces; the first two are of course Snell’s law and the mirror reflection rule:

n ni i t tsin sinθ θ= (4.1)

 θ θi r= − (4.2)

The third result is that the wavevector of incident light, the surface normal at the point of incidence, and
the wavevectors of reflected or refracted light, all lie in the same plane, a fact that we have used implicitly
until now. Note that as an algebraic definition, plane mirror reflection is the same as Snell’s law if we use
n nr i= −  and a sign convention such that angles measured clockwise (counterclockwise) from the surface
normal are negative (positive).

If one knows the shapes and positions of all of the optical surfaces, and specifies a bundle of rays coming
from some object, one can use these rules to find the location and size of an image exactly, without resort
to the small angle or thin lens approximations. The procedure is to take each ray, find where it intersects
the first surface, apply the three rules to get the direction of the reflected or refracted ray, follow this new
ray to the next surface, find the new intersection point, apply the rules again, et cetera, until the rays reach
the final image. This would be a large number of simple calculations, which a human might perhaps find
tedious; far better to do it on a computer. In the following, we will show how to set the ray-tracing
problem up to facilitate computer calculation. The first set of equations we obtain will be used in the
homework for some ray tracing “by hand,” to get a feel for what the computer is doing.

Why go through all of this? Because we will discover in exact ray traces that all optical systems actually
blur images to some degree. To produce the sharpest astronomical pictures possible, we need to
understand the blurring process; exact ray tracing is used in this optimization process.

We start by composing a computer-friendly description of rays. Now, rays simply consist of a direction,
once they start off from some given point, and the directions are conventionally kept track of by using the
angles, and the cosines thereof, that the ray makes with a Cartesian coordinate system. A ray, of course,
keeps the same set of angles and direction cosines until it encounters the next surface. The usual setup is
shown in Figure 4.1. If one considers the ray to be represented by a unit vector νννν, it will have the
following components in this coordinate system:
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The components γ, δ, and ε are called the direction cosines of

the ray. Note that since νννν is a unit vector, γ δ ε2 2 2 1+ + = .

To find out what happens to this ray at the next surface, one
needs to know where it intersects that surface, and at what
angle, so that Snell’s law or the mirror-reflection rule can be
applied. The intersection can be determined easily if one has
an analytical expression for the surface and the line that the
input ray follows, in the same coordinate system. To find the
incidence angle, one needs the direction of the unit vector
normal to the surface at the intersection, ′ = ′ ′ ′νννν γ δ εb g ; this

is perpendicular to the gradient of the surface at the
intersection point. By convention, ′νννν  points toward the
medium in which the output light will propagate, as shown in
Figure 4.2. The incidence angle, and thus the angle of
reflection or refraction, can be had from

cos

cos

sin sin cos

θ γγ δδ εε

θ γγ δδ εε

θ γγ δδ εε

i

i

r
i

r

n
n

= ⋅ ′ = ′ + ′ + ′

= ′ + ′ + ′

= ′ + ′ + ′
L
NM

O
QP

−

− −

νννν νννν

or                 ,

and                ,

1

1 1

b g
e j

(4.4)

where Snell’s law has been used in the last step. Note that the
two possibilities for orientation of ′νννν  involve equal values for
each direction cosine, but opposite signs. The proper
orientation can be obtained by choosing the combination that
gives cosθ i  in Equation 4.4 the same sign as the ratio of
n nr i/ , if one uses n nr i= −  to describe the medium “behind”
a reflecting surface. (As we’ve mentioned, this latter step also
turns Snell’s law into the mirror reflection rule.)

The resulting ray goes off in the direction ′′ = ′′ ′′ ′′νννν γ δ εb g ,
and we therefore need three equations to solve for the three direction cosines. Since we know θi and θr, we
have three independent equations in ′′ ′′ ′′γ δ ε,   and  from the inner products involving ′′νννν  in Figure 4.2,
and from the condition that all three unit vectors lie in a plane; these are, respectively,
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with θi and θr given by Equations 4.4. Including the direction cosines explicitly, and referring to Figure
4.2, we obtain

Figure 4.1: coordinate system for ray
tracing.

Figure 4.2: geometry of the input,
surface normal and output unit vectors,
for refraction (top) and reflection
(bottom).
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which can be expressed in matrix form as follows:
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where the matrices αααα  and ββββ  are known. This can easily be solved for the components of ′′νννν  in closed
form, but it’s usually easier simply to tell the computer how to solve the matrix equation; there are many
fast numerical methods for doing so. Since only a 3×3 matrix in involved, even Cramer’s rule can be used
efficiently, with which

′′ = ′′ = ′′ =γ δ ε
αααα
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1 2 3 , (4.8)

where  means a determinant is taken, ααααn is the matrix generated by replacing the nth column of αααα
with the corresponding components of the vector ββββ , and where it is assumed that αααα  has a nonvanishing
determinant.

One way or another, it is simple for the computer to solve for ′′νννν . It can then use this vector as the new
νννν , and the process repeats at the next surface.

Example 4.1
Consider two parallel rays incident on a concave paraboloidal mirror
with focal length f; with one ray traveling along the paraboloid’s
symmetry axis and the other a distance x0 away. The two rays reflect
and intersect. Show by tracing the rays that they intersect on the
symmetry axis, f  from the apex. (We have already proven this to be
true, in section 3.2.)

An appropriate coordinate system is shown in Figure 4.3. The
unit vectors for the incident rays are the same, since they travel
the same direction, and in this system are given by
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The paraboloid is described by
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Figure 4.3: geometry of Example 4.1.
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so the slope is
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and the slope of the paraboloid’s normal is
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Since we have calculated slopes in such a way that m = tanθ, where θ as usual is the angle with respect to
the x-axis, and since by convention the surface normal should point toward the output medium, the
direction cosines of the normal unit vector νννν′′′′ are given from
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Also, cosϕ′=δ′=0, since the whole figure lies in the x-z plane:
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The incidence angle is given from
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Now, since θr =- θi, we know that the magnitudes of cosθ r  and cosθ i  must be the same. However,
cosθ r  must have the same sign as νννν νννν⋅ ′′ , which is opposite the sign of νννν νννν⋅ ′ , so we must have
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Thus the matrix equation becomes
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This can be solved with Cramer’s Rule, but it’s easier in this case to multiply out the component
equations, though, for which we get
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The last of these equations gives ′′ =δ 0 , unsurprisingly. Equation 4.19 can be combined with 4.18 to give
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As you’ll note, this satisfies ′′ + ′′ =ε γ2 2 1 , as it must. So, for the ray incident upon the mirror’s apex,

′′ = − ′′ =ε γ1 0,     , (4.22)

where l’Hôpital’s rule, or the summing to unity of the squares of the direction cosines, is used because of
the indeterminacy of the latter expression at x = 0. As expected, this ray reflects back along the mirror’s
symmetry axis. At x = x0 ,

′′ = = ′′
′′

=
−

+

+
−

F
HG

I
KJ

= −
F
HG

I
KJm

dz
dx

f

f x

f
x

f

f x

x
f

x
f

ε
γ

1
8

4

4 4

4
1

1
4

2

2
0
2

0

2

2
0
2

0

0
2

    , (4.23)

so the line along which the output ray propagates is
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and it duly intersects the symmetry axis ( x = 0 ) at z f= − .
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