6. Lecture, 21 September 1999

6.1 Computer ray tracing

RayTrace version 5.0 (by J.R. Houck and T.L. Herter, professors of astronomy at Cornell) is a computer program that traces rays through optical systems in the manner discussed above. It is a powerful program, capable of tracing systems with very complicated surfaces, off-axis mirrors and lenses, and even dispersive elements such as gratings and prisms. Despite its power, it's still easy to use for simple lenses and mirrors.

Figure 6.1: schematic diagram of ray bundle, optical system and focal-plane spot diagram.

RayTrace allows one to specify an optical system prescription (lenses and mirrors) and a "bundle" of rays originating in a point - either lying a finite or an infinite distance from the first surface. Tracing the bundle through the system, it ends by showing the points at which the rays intersect a final surface, the focal plane (Figure 6.1). This plot of intersection points is called a spot diagram. Since the rays always originate in a point, a perfect optical system would have a point image, so there would be only one spot in the spot diagram. The actual spread of spots in the focal plane is most often what an optical designer is concerned with minimizing, by modification of the optical prescription. Many optical-design programs can even perform this

optimization automatically, subject to whatever constraints or free parameters are chosen by the designer.

RayTrace 5.0, its manual, a tutorial, and several example optical prescriptions, are provided, but the easiest way to learn to use it is by example; let's therefore demonstrate the program on some simple lenses and mirrors.

Example 6.1

Enter the RayTrace prescription, and obtain the focal-plane spot diagram and position of best focus, for an equiconvex lens made of flint glass (n = 1.5) and used in vacuum, with an infinitely distant object. Take the focal length to be 10 cm, the diameter 1 cm, and the thickness between apices 0.2 cm.

First we will need the radii of curvature for the surfaces of the lens. Since they're equally curved in this case, $r_1 = -r_2$, and from the lensmaker's equation we get

$$r_1 = 2(n-1)f = +10$$
 cm .

Then we can turn on RayTrace by typing **Ray <CR>** at the command prompt in a DOS window. (Here, and henceforth, **<CR>** means to type a carriage return.) This should produce the screen shown in Figure 6.2; selection of the **P** option then produces the optical prescription entry screen shown in Figure 6.3. The front surface of our lens is spherical, has radius +10 cm and diameter 1 cm, and is followed by a medium of thickness 0.2 cm and index 1.5; these values are entered as follows:

```
RayTrace by J.R. Houck and T. Herter

Version 5.0; Last Update: 29-Aug-90

Options:

Current

P : Prescription mods (None)

S : Save Prescription

F : Fetch Prescription

C : Color Selections

D : Directory

I : Initialize

L : List Prescription on printer

T : Trace

B : File to write trace info (None)

Q : Quit

Select :
```

Figure 6.2: RayTrace startup screen

```
SN: Surface No. .... 1
                                   NA: Name ...
RA: Radius (0 for flat) . 0.00000 AP: Aperture ..... 1.00000
                                        FT: Following Thickness . 0.00000
EC: Eccentricity ..... 0.00000
         Indices
                                    Aconics
                                                                Tips
                               -----
                                                          -----
    -----
FI: Follow'g0.00000FA: Fourth ..0.0E+0000AT: Alpha ...0.00000SI: Short ...1.00000SA: Sixth ...0.0E+0000BT: Beta ....0.00000LI: Long ....1.00000EA: Eighth ..0.0E+0000GT: Gamma ...0.00000
                                 Spec. Surface
                                                           Miscellaneous
    _ ____E
        Decenters
                               -----
                                                         -----
XD: X-Decntr 0.00000 SS: Special Conic Surf NS: Next Surface
YD: Y-Decntr0.00000S1: Coef'nt10.00000ZS: Z-Shift0.00000S2: Coef'nt20.00000
                                                       PS: Prev. Surface
                                                         +1: Insert Surface
                           S3: Coef'nt3 0.0E+0000
                                                         -1: Delete Surface
                                                         PN: Perscript Name
                                                         EX: Exit Routine
    Select :
```



```
RA <CR> 10 <CR>
AP <CR> 1 <CR>
FT <CR> 0.2 <CR>
FI <CR> 1.5 <CR>
```

All of the other parameters can be left with their default values, including the eccentricity EC, for which the default value is that of a sphere. RayTrace uses the same units throughout; since we have started entering lengths in centimeters we must now continue to do so. The next surface of the lens has radius -10 cm (RayTrace's sign convention is the same as ours), diameter 1 cm (still), and is followed by vacuum. In the spirit of the paraxial approximation we may expect the focus to be 10 cm from the lens, or 9.9 cm from this surface. Thus

NS <CR> (to move RayTrace's attention to the next surface) RA <CR> -10 <CR> AP <CR> 1 <CR> FT <CR> 9.9 <CR> FI <CR> 1 <CR>

The next surface is the focal plane. By default the following index FI of RayTrace's surfaces is zero; RayTrace will trace rays until it finds a surface with FI=0, so the default surface setup will suit us just fine for the focal plane. Now type

EX <cr></cr>	to get out of prescription-entry mode,
S <cr></cr>	to save the prescription (always a good idea), and
т	to enter ray-specification mode.

This last step calls up a new menu, shown in Figure 6.4. Some of the variables listed here can be entered as numbers; some allow one to toggle through a list of options; others still are looked up from the previous data-entry steps, such as the value of BF, which is set equal to the last value of FT in the optical prescription. Now type

FI	<cr></cr>			until the Field of Object is "Far Field" (actually the
				default value); this indicates that an infinite object
				distance (i.e. parallel rays) are required.
RP	<cr></cr>			until the Ray Pattern is "bullseye" (a circularly-
				symmetric pattern of rays covering the first surface in
				the prescription, with the number of rays given by NR).
CR	<cr></cr>			until it reads "List;" this will produce a list of the
				intersections and direction cosines of the central ray in
				the pattern (the <i>chief ray</i>) before a spot diagram is drawn.
PS	<cr></cr>	0.01	<cr></cr>	(actually the default value) to draw the spot diagram in
				a box 0.02 cm on a side, centered on the point where the
				chief ray intersects the focal plane.

We're now ready to generate a spot diagram; type **SD <CR>**. First, the program will type a list of positions and direction cosines (γ , δ , ε) for the chief ray. Note that the coordinate system in RayTrace is the same that we have been using, with the *z* axis pointing along the optical symmetry axis. This list will be useful in the future for debugging more complicated optical systems. Type any key to continue to the spot diagram; the result is shown in Figure 6.5.

```
FI : Field of Object .....
                                         Far Field
                                                                          None
                                                                               None
     DI : Object Distance .....
                                               100.00000
     DX : X Offset (Degrees or Units) ..
                                              0.00000

        DY : Y Offset (Degrees of Units) ..
        0.00000

        SI : Starting Index .....
        1.00000

     WC : Wavelength Code (1, 2 or 3) ..
                                                       1
     NP : Number of Panels ...
                                     1
     NR : Number of Rays ..... 100 RP : Ray Pattern ..... Circmscrbd Sqr
     BF : Back Focal Distance .....
                                                9.90000
     PS : Plot Scale (Units/100 pix.) ..
                                                 0.01000
     CR : Central ray
                            No List
     RX : X coord ...
                            0.00000 RY : Y coord ... 0.00000 (Sngl
Ray)
     SD : Spot Diagram
                               MT : Meridional Trace
                                                          TS : Trace Save (FALSE)
     PA : Plot Again
                               BE : Bend surfaces
                                                          MP : Modify Presciption
     SP : System PlotAX : X-Axis (FALSE)EX : ExitSS : Start Surf (1)VH : Ver/Hor (1.00)
  Select :
```

Figure 6.4: RayTrace ray-specification menu.

Figure 6.5: spot diagram for equiconvex lens, 9.9 cm from second surface.

The spot diagram is a plot of the intersection between approximately NR (=100 at present) rays and the plane perpendicular to the z axis, a distance BF (=9.9 cm) from the apex of the last surface. Note that it appears as a series of nested circles, about 0.004 cm in diameter at the widest. Type a key to proceed.

The next screen is a collection of statistics on the spot diagram just generated; it is shown in Figure 6.6. It includes the coordinates of the spot center, that of the chief ray (with its direction cosines), and the root-mean-square (RMS) width of the collection of spots, which turns out to be 0.001394 cm. This RMS width varies along the optical path, of course, and it turns out that our present position is not the sharpest focus. RayTrace, however, has already worked the distance and size of the smallest RMS diameter, and lists this under the terms Sm_RMS (0.000398 cm) and Delta_Z (0.035592 cm; further from the lens). The program can automatically move the focal plane to this new position; and will do so if you simply type **1**. This brings back the ray specification menu, with the value of BF changed from the original; it is now 9.93559 cm.

Now type PA <CR> ("plot again"). If all that was done since the last SD was a re-focus to change BF, then RayTrace does not need to recalculate anything to plot the new set of intersections between rays and focal plane. The new spot diagram is shown in Figure 6.7. Note that indeed the spot is considerably smaller than before; this new position is a better focus. It is still not a point image, though. As we will see, this remaining blur is due to *spherical aberration*. Hit <**CR**> twice to return to the ray-specification menu.

Example 6.2

Now put into the lens from Example 6.1 a parallel bundle of rays inclined 0.01 radian with respect to the optical axis, and find the position and shape of the spot diagram in the same focal plane as before.

In the ray-specification screen, the parameters DX and DY function as angular offsets (in degrees) from the axis for the ray bundles; let us take the tilt to be about the *y* axis, and enter **DX <CR> 0.572958 <CR>** (that's 0.01 radians, in degrees). Type **SD <CR>** to generate a new spot diagram, and another key to

```
File : None
               Name: None
    Average Spot Position: X =
                                  -0.000010
                                              Y =
                                                     0.000002
Central Ray Values:
   X =
          0.000000
                      Y =
                             0.000000
                                         Z =
                                                0.00000
          0.000000
                             0.00000
                                                1.000000
   Cx =
                     Cy =
                                        Cz =
Spot Statistics: ( 126 rays traced in 126 tries) :
 RMS
       = 0.001394 Sm RMS
                             = 0.000398 Delta Z =
                                                       0.035592
 RMS X = 0.000982 Sm RMS X = 0.000280
                                           Delta Zx = 0.035718
         0.000989 Sm RMS Y = 0.000283
 RMS Y =
                                           Delta Zy = 0.035469
Bull's Eye pattern traced.
 Do you want to refocus?
     1 - To the minimum RMS
     2 - To the minimum RMS X
     3 - To the minimum RMS Y
        - Any character for not refocus
 Select :
```

Figure 6.6: spot statistics screen.

Figure 6.7: spot diagram for the equiconvex lens at the position of best focus, 9.93559 cm from the apex of the second surface. Compare with Figure 6.5.

get the spot statistics (Figure 6.8). Three features of this solution are worth noting. First, the spot diagram is no longer circularly symmetrical, and is slightly larger than our last result. Next, the displacement of the chief ray from the optical center, winds up very close to that predicted by the paraxial estimate of the plate scale: 1.0003 mm, compared to $f\Delta\theta = 1$ mm. Finally, the position of the best focus for the present incidence angle is slightly closer to the lens (Delta_Z = -0.001382 cm) than that for the on-axis rays in Example 6.1.

Example 6.3

With the same lens, place an object 20 cm in front of the lens; find the focus of the on-axis point, and in the same focal plane plot spot diagrams for images of points on the object 1 cm above and below the axis.

Type

FI <cr></cr>	until the Field of Object is "Near Field"; this indicates finite object distance.
DI <cr> 20 <cr></cr></cr>	to set the distance to the front of the lens to 20 cm.
SD <cr></cr>	for a spot diagram. Only one spot will appear, because
	the old value of BF is very far from the new focal plane,
	but we need only refocus:
<cr> 1 <cr></cr></cr>	Refocus. Note that the position of the new focal plane is 19.91557 cm, close to but not quite the paraxial value.


```
File : None
              Name: None
    Average Spot Position: X = 0.100215 Y = -0.000000
Central Ray Values:
         0.100030
   X =
                   Y = 0.00000
                                     Z =
                                             0.000000
          0.009933 Cy =
  Cx =
                           0.000000 Cz =
                                             0.999951
Spot Statistics: ( 126 rays traced in 126 tries) :
 RMS = 0.000431 Sm RMS = 0.000428 Delta Z = -0.001382
 RMS X = 0.000315 Sm RMS X = 0.000311 Delta Zx = -0.001827
 RMS Y = 0.000294 Sm RMS Y = 0.000293 Delta Zy = -0.000950
Bull's Eye pattern traced.
 Do you want to refocus?
     1 - To the minimum RMS
     2 - To the minimum RMS X
     3 - To the minimum RMS Y
       - Any character for not refocus
 Select :
```

Now we have the best BF for on axis points. We can plot spot diagrams and obtain statistics for all three object points requested in one ray trace, by typing

DX <cr> 1 <cr></cr></cr>	DX and DY are lengths, measured in the current distance
	units, when FI is set to near field.
NP <cr> 5 <cr></cr></cr>	to set the number of panels to plot. This will produce
	spot diagrams for points at +DX, 0 and -DX. It should be
	NP = 3; this represents a minor bug in the program.
SD <cr></cr>	for a spot diagrams, and
<cr></cr>	for statistics.

The results are shown in Figure 6.9. The spot diagrams for the off-axis points are larger and oblong compared to central spots; this stretched-out appearance is due primarily to *astigmatism*.

Note from the statistics that the central rays originating at $x = \pm 1$ cm wind up at $x = \pm 0.996$ cm – the image is inverted, and the lateral magnification is very close to -1, as expected.

None	-		+ + +	-
Scale: 0.0020000	-	+		-
per Tic	- (C)	-		-
	-	+	+	-
Done		†	<u> †</u>	-

```
File : None
               Name: None
                     Panel Mode:
                                   3 panels computed.
 126 rays attempted in bull's eye pattern.
      DX
                      NumRays Avg. X
                                         Avg. Y
                                                                      Delta Z
                 DY
                                                  Z-Center
                                                               RMS
1
   -1.000000
             0.000000 118
                              0.996116 -0.000000
                                                  0.000000 0.002447 -0.121745
2
    0.000000
             0.000000 126
                              0.000005 -0.000001 0.000000 0.000544 -0.000000
3
    1.000000 0.000000 117
                             -0.996077 -0.000004 0.000000 0.002419 -0.120653
Done with Stats
Press <cr> to continue
```

Figure 6.9: finite imagery with the equiconvex lens in Example 6.3. Left to right: DX = -1, 0, 1 cm.

Example 6.4

Obtain spot diagrams and the best focal position for a Cassegrain telescope with a primary mirror 20 cm in diameter 10 cm and apex curvature 60 cm, and a secondary with eccentricity 1.66667, apex curvature 18.66660 cm, and diameter 3 cm, for incident light from a distant object at angles 0, \pm 0.1 degree, and \pm 0.2 degree.

First, we need to know the focal lengths. That of the paraboloid is 30 cm, half the apex curvature radius (see Equations 3.8 and 3.9). For the hyperboloid we have Equations 3.11 and 3.12,

$$r = \frac{b^2}{a} ,$$

$$\varepsilon = \frac{\sqrt{a^2 + b^2}}{a}$$

.

Using the first of these to eliminate *a*, we get

$$\varepsilon = \frac{r\sqrt{\frac{b^4}{r^2} + b^2}}{b^2} \quad \Rightarrow \quad b = \frac{r}{\sqrt{\varepsilon^2 - 1}} \quad , \tag{6.1}$$

whence

$$a = \frac{b^2}{r} = \frac{r}{\varepsilon^2 - 1}$$

$$c = \varepsilon a$$

$$f = c \pm a = (\varepsilon \pm 1) \frac{r}{\varepsilon^2 - 1} = \frac{r}{\varepsilon \mp 1} = 28 \text{ and } 7 \text{ cm} \quad .$$
(6.2)

This convex miror faces the concave paraboloid in a "nesting" fashion, with its nearer focal point coincident with that of the paraboloid; thus the apices are 23 cm apart.

Type **EX** to escape back to the startup menu, **I** to initialize (throw away the lens prescription), and **P** to enter the prescription. First the primary mirror:

RA	<cr></cr>	-60 <cr></cr>	negative, because its center of curvature lies at smaller
			<i>z</i> than the surface (i.e. it's concave from the point of view
			of the incident light);
EC	<cr></cr>	1 <cr></cr>	for a paraboloid;
FI	<cr></cr>	-1 <cr></cr>	to signal reflection rather than refraction;
AP	<cr></cr>	10 <cr></cr>	
NS	<cr></cr>		for the next surface.

RayTrace allows specification of the shadow cast by the secondary mirror on the primary; we have left the FT of this first surface zero because it is conventional to place this shadow right on the primary. It is specified as follows:

SS <cr> CO <cr></cr></cr>	to specify the special "central obscuration" surface;
S1 <cr> 3 <cr></cr></cr>	when a central obscuration is specified, this parameter
	gives its diameter; all rays inside this diameter are blocked;
AP <cr> 10 <cr></cr></cr>	all rays outside this diameter are blocked;
FI <cr> -1 <cr></cr></cr>	rays still travel the same way they did after reflection from the primary mirror;

Astronomy 203/403, Fall 1999

FT <cr> -23 <cr></cr></cr>	reflected rays travel toward negative z, so the following
	thickness is negative;
NS <cr></cr>	for the next surface.

Now the secondary mirror:

RA <cr> -18.6666 <cr:< th=""><th> still negative, because its center of curvature lies at smaller <i>z</i> than the surface (same as the primary mirror); </th></cr:<></cr>	 still negative, because its center of curvature lies at smaller <i>z</i> than the surface (same as the primary mirror);
EC <cr> 1.66667 <cr></cr></cr>	for a paraboloid;
FI <cr> 1 <cr></cr></cr>	change the sign of the index again, tosignal reflection rather than refraction;
AP <cr> 3 <cr></cr></cr>	
FT <cr> 28 <cr></cr></cr>	positive, because the light travels in the positive <i>z</i> direction again;
NS <cr></cr>	for the next surface.

The default values are fine for the next surface, which is the focal plane. Type EX <CR> T to get to the ray-specification menu; choose Far Field with FI, and a bullseye ray pattern

EX	<cr></cr>	т		to leave prescription entry and enter ray specification;
FI	<cr></cr>			to choose Far Field;
DX	<cr></cr>	0	<cr></cr>	to restrict ourselves to on-axis rays for now;
NP	<cr></cr>	1	<cr></cr>	
RP	<cr></cr>			until the bullseye pattern is chosen;
SD	<cr></cr>	1	<cr></cr>	to focus.

The best focus turns out to be at BF = 28.00030 cm, slightly different from the nominal 28 cm because of the finite precision with which we entered the optical prescription. Now to do the off axis rays: type

<cf< th=""><th>2></th><th>for the statistics,</th></cf<>	2>	for the statistics,
SD	<cr></cr>	for the spot diagram,
PS	<cr></cr>	0.001 <cr></cr>
NP	<cr></cr>	9 <cr></cr>
DY	<cr></cr>	0.2 <cr></cr>
DX	<cr></cr>	0.1 <cr></cr>

With the use of the axial symmetry of the system, and both DX and DY, we get the values we were asked for and one more besides. The results are shown in Figure 6.10. Worthy of note here are the following features of the calculation:

- 1. On-axis rays still focus perfectly.
- 2. Off-axis rays do not. With a bullseye-shaped ray bundle to start with, the resulting spot diagrams appear as concentric circles of spotswith a range of diameters, the larger ones lying further away from the center of the focal plane. It turns out that these larger circles of spots come from rays originally incident further out toward the edge of the primary. The "cometary" shape of these spot diagrams and the tendency for the "tail" to point away from the center of the focal plane gives rise to the name of the aberration that is dominant here: *coma*.

	DX	DY 1	NumRays	Avg. X	Avg. Y	Z-Center	RMS	Delta_Z
1	-0.100000	0.200000	119	-0.209554	0.419121	-0.000000	0.000508	-0.014345
2	0.000000	0.200000	119	0.00004	0.419118	0.000000	0.000415	-0.011538
3	0.100000	0.200000	119	0.209564	0.419123	-0.000000	0.000512	-0.014475
4	-0.100000	0.00000	119	-0.209550	-0.000000	0.000000	0.000124	-0.002821
5	0.000000	0.00000	119	0.000000	-0.000000	0.000000	0.000000	-0.000000
6	0.100000	0.00000	119	0.209553	0.000000	0.000000	0.000127	-0.002926
7	-0.100000	-0.200000	119	-0.209556	-0.419123	-0.000000	0.000510	-0.014406
8	0.000000	-0.200000	119	0.00003	-0.419120	0.000000	0.000416	-0.011576
9	0.100000	-0.200000	119	0.209563	-0.419124	-0.00000	0.000512	-0.014488
Do: Pro	Done with Stats Press <cr> to continue</cr>							

3. Judging from the values of Delta_Z, the surface of best focus is curved; the minimum RMS spotdiagram width for the off-axis points lie closer to the secondary mirror the further off axis the rays are. This is an example of yet another aberration: *Petzval field curvature*.

The prescription we just generated is included with your copy of RayTrace, and is called CASS.RAY.