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9. Lecture, 30 September 1999

9.1 Telescopes in general

Astronomers always want their telescopes to have large light-collecting areas, because they observe very
faint objects, and large, flat, unblurred fields of view, because the sky tends to have interesting structure
on all observed angular scales. Mirrors, rather than lenses, meet the former requirement best. It is hard to
make large enough pieces of class free enough of bubbles, color and cloudiness to be of much use in
telescopes. It is hard to support them mechanically, since they must be held by their edges, which is the
weakest part of a converging lens. The variation of the refractive index of glass with wavelength, or
dispersion, limits the range of wavelength over which aberrations can be corrected. The largest telescope
objective lenses ever made are the Yerkes Observatory 40 inch (1 m) and the Lick Observatory 36 inch
(0.91 m), both built by the Alvan Clarks (a famous father-and-son team of opticians) in the 1890s. These
telescopes still see regular use, but because astronomers have other telescopes a factor of ten larger in
diameter these days, the refractors no longer contribute to the solution of problems at the frontiers of
astrophysics.

Mirrors, on the other hand, need not be made of transparent materials, and can be supported solidly from
their back sides. Their use in telescopes is therefore universal, at all wavelengths from X rays to radio. At
ultraviolet, visible and infrared wavelengths, the mirrors are commonly made of polished low-expansion
glass or glassy ceramics, coated with thin metallic and dielectric films to make them reflective.

The supporting structure and mechanisms required for a modern telescope are complex, and we will
therefore not attempt to describe them completely here. Mirrors in ground-based telescopes are usually
held up by open space-frame structures that in most cases are designed to flex under their weight in such
a way that the mirrors remain nearly coaxial; then the only correction that needs to be made when the
telescope orientation is changed is a motion of the secondary mirror along its axis. That this is a relatively
difficult and costly task is indicated by the resemblance of large numbers of big telescopes to each other.
For example, the apparent similarities among many telescopes in the 2-5 meter diameter class are due to
the common use of an arrangement of beams called the Serrurier truss. Another example is provided by
the Keck and Hobby-Eberly 10-m telescopes; the space frame structures for these three telescopes not only
look the same, but were designed by the same engineer.

For the telescope to point at objects in arbitrary places in the sky, the telescope has to be provided with
mechanisms to rotate it around two perpendicular axes. Two such schemes are in use: equatorial (or polar)
and altitude-azimuth mounts. The latter mount, usually called “alt-az,”  is superficially the simplest. It
involves rotations about a horizontal axis –  measured by the altitude or elevation, the angle between the
telescope axis and horizontal -- and a vertical axis, through the local zenith, measured counterclockwise
from north to the projection of the telescope axis on the ground. Figure 9.1 is an illustration of this
scheme. The principal advantage of the alt-az mount is that it can bear more weight with less flexure than
the equatorial mount, because the weight of the telescope from its center of mass can be designed to lie
along the axis of the support structure. It is also the more compact of the two, usually fitting underneath
the telescope, and therefore results in a system that can be enclosed by a smaller, less-expensive dome.
There are two principal disadvantages, however. First is the necessity of mechanisms and control systems
to drive the telescope in both altitude and azimuth, at variable speeds, to follow a celestial object across
the sky, because the angular coordinates of altitude and azimuth are quite different from celestial latitude
and longitude except if the telescope is built at the north or south pole. With the advent of inexpensive
microcomputers this is no longer much of a difficulty, but early radio telescopes were sometimes built
with complex mechanical or analog computers to translate between the two coordinate systems. Second is
a more fundamental difficulty: the rotation of the field of view about the optical axis, from the point of
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view of a detector fixed in position with respect to the telescope. Removal of this image rotation involves
an additional mechanism and control system to rotate either the instrument or the image in synch with
the rotation of the sky.

Altitude
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Figure 9.1: altitude-azimuth telescope mount.

Declination

Hour angle

To north
celestial
pole

Figure 9.2: equatorial, or polar, telescope mount.
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Both of these difficulties are avoided in the equatorial-polar mount, shown in Figure 9.2. In this system
one of the telescope axes is aligned parallel with the Earth’ s rotation axis, pointing at the north celestial
pole. Swiveling the telescope about this polar axis, with the other dimension fixed, moves the field of view
of the telescope’ s field of view in the same direction that non-solar-system objects appear to move due to
Earth’ s rotation. Thus only one, constant-speed, motor drive is necessary to track the stars. The angular
coordinate corresponding to rotation about the polar axis is called the hour angle (HA). It is measured in
hours, minutes and seconds of time from the direction of a north-south meridian through the local zenith,
and is directly related to the celestial longitude coordinate, right ascension (RA), and the local sidereal time
(LST):

HA RA LST= −     . (9.1)

The orthogonal equatorial axis gives rise to an angle, measured from the polar axis in degrees, minutes and
seconds of arc, that is identical to the celestial latitude coordinate, declination. If the polar axis is well-
aligned with Earth’ s rotation, no object-tracking controller is needed for the equatorial axis unless solar
system objects are to be observed, and the field of view of the focal plane detectors does not rotate on the
sky. The largest and best-known visible-infrared telescope with a equatorial mount is the 200-inch (5 m)
Hale telescope at Palomar Observatory, shown in Figure 9.3

Figure 9.3: The 200-inch Hale telescope at its
dedication in 1948. The telescope pivots in
declination about an axis through the dark spot
on the face of the large strut in the foreground.
It is steered in right ascension about an axis
through the large bearing at left and the center
of the “horseshoe” at right. (Caltech Archives)

Figure 9.4: drawing of one of the Gemini telescopes,
with its alt-az mount and partially-covered 8.1 m
primary mirror. The entire structure as pictured
rotates about a vertical axis to point the telescope in
azimuth, and the telescope pivots in elevation about
an axis through the trusses shown just above the
upper platform. (Gemini Observatory)
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Until relatively recently only radio telescopes used alt-az mounts. The new generation of very large
visible and infrared telecopes, begun by the 6-m Large Altazimuth Telescope (LAT) in southern Russia in
the late 1970s, involves such massive and bulky structures that only the alt-az mount is considered. Table
9.1 is a list of the telescopes presently operating or under construction that are larger than the LAT and
the Palomar 200-inch; all have alt-az mounts. An example, one of the Gemini 8.1 m telescopes, is shown in
Figure 9.4.

For satellite observatories the mechanical considerations are somewhat different, since the structure must
be as light as possible and must survive the 10-20g accelerations of launch, but once deployed suffers no
gravitational sag. Telescope pointing is usually accomplished by motion of the entire spacecraft, through
the use of small compressed-gas thrusters and reaction wheels, as illustrated in Figure 9.5. After
deployment, the spin of the satellite is brought to a halt with respect to the fixed stars by use of the
compressed-gas thrusters and the combination of star-tracker cameras. At this point the satellite has zero
angular momentum, and can be pointed precisely to a reference position, and subsequently to celestial
objects of interest, by turning the two orthogonal-axis reaction wheels with respect to the rest of the
satellite: from the point of view of the celestial sphere the reaction wheel and the rest of the spacecraft
move in opposite angular increments in the ratio of the moments of inertia of wheel and spacecraft. The
thrusters can also be used to “unload” the reaction wheels should it be desired to place a reference
position in a certain spot in the angular range of a reaction wheel.

Table 9.1: the new generation of large visible and infrared telescopes

Name Organizations Location Diameter
(number of
telescopes)

W.M. Keck
Observatory

Caltech, U. California, NASA Mauna Kea,
Hawaii

11×10 m
hexagon (2)

MMT (formerly
the Multiple-
Mirror Telescope)

Smithsonian Astrophysical Observatory, U.
Arizona

Mt. Hopkins,
Arizona

6.5 m

Subaru National Astronomical Observatory of Japan Mauna Kea,
Hawaii

8.3 m

Gemini United States, United Kingdom, Canada,
Chile, Australia, Argentina, Brazil

Mauna Kea,
Hawaii and
Cerro Pachón,
Chile

8.1 m (2)

Hobby-Eberly
Telescope

University of Texas, Pennsylvania State U.,
Stanford U., Ludwigs-Maxmilians U., Georg-
August U.

Mt. Fowlkes,
Texas

11×10 m
hexagon

Very Large
Telescope

European Southern Observatory Cerro Paranal,
Chile

8.2 m (4)

Large Binocular
Telescope

Osservatorio Astrofisico di Arcetri (Italy), U.
Arizona, Arizona State U., Northern Arizona
U., LBT Beteiligungsgesellschaft (Germany),
Ohio State U., Research Corporation

Mt. Graham,
Arizona

8.4 m (2)
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9.2 Aberration compensation in two-mirror telescopes

For several decades following the construction of the first truly large telescopes, the 100-inch (2.5 m)
Hooker reflector at Mt. Wilson Observatory (1917) and the 200-inch (5 m) Hale reflector at Palomar
Observatory (1948), other large telescopes were almost exclusively built in their image: with paraboloidal
primary mirrors and optionally with a selection of convex hyperboloidal secondary mirrors. A single
paraboloid is of course the simplest telescope that lacks spherical aberration. Most of the important results
obtained with the 100-inch, and many of those with the 200-inch, employed the telescope in this fashion,
with photographic plates placed at the (prime) focus of the primary mirror. The paraboloid-hyperboloid
combination is called the classical Cassegrain telescope; it shares with the paraboloid-concave ellipsoid
Gregorian telescope the lack of spherical aberration (see §3.2), and is generally preferred over the latter
because its smaller primary-secondary distance leads to a substantially shorter, and therefore stiffer,
telescope structure.

Classical Cassegrains also have the useful property that a given primary mirror can be used with an
arbitrary number of secondary mirrors without changing the aberrations; all that is required is for the
secondary to be adjusted into alignment with its near focus coincident with the primary’ s focus. It is
customary for two-mirror telescopes to have at least two secondaries, for the standard setups illstrated in
Figure 9.6. One of them relays the final focus behind the primary in the usual Cassegrain configuration.
The other has a much longer second focal length and is used with a flat tertiary mirror that directs the
beam down the elevation or declination axis of the telescope. This latter configuration is called the coudé
(equatorial mount) or Nasmyth (alt-az mount) focus. The virtue of the coudé/Nasmyth focus is that it
enables the use of instruments too heavy or bulky to be fastened directly to the telescope.

Star tracker view

Star tracker view

Reaction
wheel

Reaction wheel

Reaction wheel

Telescope

Spacecraft

Telescope
view

Figure 9.5: functional schematic of a satellite observatory, showing three reaction wheels
and two star-tracking cameras for orientation of the telescope and focal plane. The axes of
the reaction wheels pass through the center of mass of the system. Not shown are the
nozzles of compressed-gas thrusters that can exert torque on the spacecraft along the
reaction-wheel axes.
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The classical Cassegrain telescope is shown in Figure 9.7. It is often convenient to define the following
dimensionless parameters associated with the geometry of the telescope. We label the primary and
secondary with the subscripts 0 and 1, in which case the ratios of apex curvatures and diameters are

ρ κ κ= 0 1/     ,    k y y= 1 0/     . (9.2)

The secondary focal lengths f1 and f2 are 1 11 1/κ ε ±b g . The image at the Cassegrain focus is therefore

magnified laterally with respect to prime focus by the factor

Cassegrain
focus

Declination or
elevation axis

Coudé or
Nasmyth

focus

Tertiary mirror
(diagonal flat)

Secondary mirrors: convex
hyperboloids

Figure 9.6: The classical Cassegrain (left) and coudé (right) configurations of a
paraboloid-primary telescope with two interchangeable hyperboloid secondary mirrors
and a flat diagonal tertiary mirror.
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Figure 9.7: classical Cassegrain telescope, with focal lengths, diameters and other
parameters defined.
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and thus the plate scale is smaller than that at prime focus by the factor 1/m. From Equation 9.3 we also
get a handy expression for the secondary eccentricity:

ε 1
1
1

= +
−

m
m

    . (9.4)

The distance from the primary apex to the Cassegrain focal plane is f0β, for which it turns out that

1 1+ = +β k ma f     . (9.5)

For example, let the magnification and diameter ratio be m = 5  and k = 1 5/ ; then Equations 9.3-9.5 give
ρ = 0 25. , ε = 1 5.  and β = 0 2. .

One can analyze the performance of a Gregorian telescope in a manner different only in sign convention
from that of the Cassegrain telescope. Because rays reflected by the primary cross the optical axis (and
change sign in y) on their way to the secondary, and form a real image at the prime focus, the
dimensionless constants k and m have signs opposite those of the corresponding Cassegrain with the same
mirror diameters and focal lengths. By the same token, the radii of curvature of primary and secondary
have opposite signs in Gregorian telescopes. Otherwise the Cassegrain and Gregorian telecopes are
basically the same, optically, so we shall discuss only one of them – the Cassegrain – in the following.

The classical Cassegrain has no spherical aberration, and its unblurred field of view is limited by coma, as
we found in Homework Problem Set #2. It is not the only two-mirror configuration that is free of SA,
however; we can generate the properties of a whole family of third-order SA-free “Cassegrain” telescopes
as follows. Consider a Cassegrain system and another two mirror system with the same apex curvatures
and apex distances made by bending the Cassegrain mirrors in the same direction, as shown in Figure 9.8.
The paraxial foci of the two telescopes, their secondary magnifications, and final plate scales are all the
same; only the aberrations due to the different paths of the marginal rays are different. We can work out
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Figure 9.8: modified Cassegrain telescope surfaces (broken lines) and classical Cassegrain
reference surfaces (solid lines), with surface displacements ∆z0  and ∆z1 for marginal
rays shown highly exaggerated for clarity.
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the conditions under which the third-order spherical aberration of the modified telescope is zero by using
the classical Cassegrain as a reference surface and calculating the angular aberrations.

The angular aberration suffered by a marginal ray is simply AA d z dy= ( ) /2 0∆ , as usual. With the mirror
surface bent toward negative z, as shown in Figure 9.8, this ray would intersect the axis closer to the
primary apex than in the classical Cassegrain; bent in the other direction, the intersection would be
further away. The angular aberration for a marginal ray on the secondary is given by AA d z dy= − ( ) /2 1∆ ,
because with the modified mirror surface bent toward negative z, a given ray would intersect the axis
further toward positive z than it would in the case of the reference secondary – the opposite direction of
the primary’ s aberration. The same is true if the secondary is bent, with the primary, toward positive z.
Evidently if the mirrors of a Cassegrain are bent in the same direction the aberrations they introduce
thereby tend to cancel. They cancel precisely if

AA
d

dy
z z= − =2 2 00 1∆ ∆b g     , (9.6)

or 2 2 00 1∆ ∆z z− = =constant (9.7)

for this to be true for arbitrary y.* From Equation 7.10 we have third-order expressions for the reference
surfaces:
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Only the eccentricities of the mirrors have changed, so to third order the modified surfaces are given by
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Substituting Equations 9.8-9.11 into Equation 9.7, we get

                                                          

* If the constant in Equation 9.6 is zero, then not only do the angular aberrations cancel but the rays travel
paths that are the same length in the modified system as in the reference system. The path length can be
shown to be a minimum in the case of the SA3-free reference system, in harmony with the elegant
rephrasing of geometrical optics known as Fermat’ s principle, so one might naturally expect that a
modified system with the same path lengths would also lack SA3. This is why one often sees the present
aberration analysis cast in the form of Fermat’ s principle, as by Schroeder in our AST 403 textbook
Astronomical Optics. I prefer to note that if the path lengths are the same ∆ ∆z z0 1 0− =b g  then the angular

aberrations cancel, as they must if the telescope is to remain SA3-free after modification.
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an expression that generates what we may call the family of Cassegrain telescopes. Given a magnification
and ratio of diameters (which as before determines the ratio of apex curvatures and back-focal distance),
and a value for the secondary eccentricity, the primary eccentricity that gives zero third-order spherical
aberration may be derived. This expression applies to Gregorian telescopes as well, subject to the sign
conventions discussed above.

Two special results of Equation 9.12 deserve our attention. First, consider the case of a convex spherical
secondary, ε 1 0= . This involves mirror bending, relative to a reference Cassegrain, in the direction
drawn in Figure 9.8. If we take m = 5  and k = 1 5/  as before (implying ρ = 0 25. , β = 0 2. ), then the
primary eccentricity comes out to ε 0 0 877= . . This combination of a convex spherical secondary and a
concave ellipsoidal primary is called a Dall-Kirkham telescope. Its attractions include cost: the two mirrors
are more easily ground and tested than most telescope mirrors. UR astronomers sometimes use a 60-inch
(1.5 m) Dall-Kirkham at the Mt. Lemmon Observatory, in the Catalina Mountains near Tucson, AZ.

Also of worthy of note is a particular arrangement of mirror surfaces bent in the direction opposite that
shown in Figure 9.8, for which both mirrors turn out to be hyperboloids. It can be shown that if
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then coma as well as spherical aberration is absent from the system * , leaving astigmatism as the only
blurring aberration and significantly increasing the size of the unblurred field of view. This of course is
the Ritchey-Chrétien telescope; we saw in Homework Problem Set #2 how one compares to a classical
Cassegrain with the same paraxial parameters. If once again we take m = 5  and k = 1 5/  (so that ρ = 0 25.
and β = 0 2. ), then the eccentricities for the primary and secondary become 1.0200 and 1.5637. It is left to
the interested reader to verify by ray tracing that of the three two-mirror telescopes just mentioned, the
one with the widest (best) unblurred field of view is the Ritchey-Chrétien, and the one with the smallest
(worst) is the Dall-Kirkham, with the increasing prominence of coma providing most of the degradation
as one moves from R-C to classical Cassegrain to Dall-Kirkham.

                                                          

* Optical systems free of coma and spherical aberrations are called aplanats.
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