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10 Lecture, 5 October 1999

10.1 Aberration compensation for spherical primaries: the Schmidt camera

All-reflecting optical systems are called catoptric; all-refracting systems are called dioptric. Mixed systems
thus are called catadioptric. Telescopes made in this latter style include the Schmidt and Bouwers-
Maksutov “cameras,” and boast the largest unblurred fields of view among large telescopes (exceeding
10° in the 1-2 m diameter class). The fields of view are large enough to outweigh for certain purposes the
limitations of telescopes with refractive elements, and thus are worthy of our attention. All of these
cameras involve clever use of the symmetry of spherical primary mirrors to avoid the off-axis aberrations,
coma, astigmatism and distortion, by never introducing them in the first place, and their design is a
straightforward problem of compensation of the mirror’s spherical aberration. In the following we will
analyze the spherical aberration of the spherical mirror in a Schmidt camera and prescribe its
compensation with a refractive “corrector plate.”

The crucial feature of Schmidt cameras is the presence of a circular entrance aperture placed with its
center at the curvature center of a spherical mirror (Figure 10.1). For any ray bundle passing through this
aperture, the chief ray passes through the center of the sphere, and therefore is perpendicular to the sphere’s
surface. In other words, all ray bundles passing through the entrance aperture are on axis, no matter what
their angle with the perpendicular to that aperture. An image is therefore formed on the spherical focal
surface halfway between the spherical mirror and its center, and the only aberration present is spherical
aberration. Schmidt realized that he could compensate for the SA by placing a refracting corrector at the
entrance aperture, and that the corrector would not reintroduce the other third-order aberrations on the
same magnitude as those of a comparably-large conic-section mirror.

Figure 10.1: optical setup for the Schmidt camera. Both ray bundles are on axis, in the
sense that the chief ray is perpendicular to the mirror surface and passes through its
curvature center.

We can follow Schmidt’s tracks by employing the angular-aberration and reference surface formalism
used above. Consider the track of a ray incident a distance y from the axis, as in Figure 10.2, in a Schmidt
camera with mirror curvature κ. This ray would normally reflect through a point which according to
Equation 7.13 lies a distance ∆f y= −κ 2 4/  from the paraxial focus. A paraboloid with its apex on the
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sphere and focus on the sphere’s paraxial focus is therefore the appropriate reference surface. The angular
aberration of our ray is given as usual by AA d z dy0 2= ( )/∆ , for which, according to Equation 7.10, we
have the third order expression
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Now consider the action of a thin dielectric prism with opening angle θ placed in the entrance aperture in
the path of this ray, with its front face perpendicular to the ray. With the orientation shown in Figure 10.2,
the ray would be refracted away from the axis by an angle such that sin sin′ =θ θn , for a net angular
deviation from its original direction of AA1 = ′ −θ θ . The angle θ is simply related to the slope of the
second prism surface, tan /θ = −dz dyc , where zc  is the position of the oblique prism surface at point y,
and where the minus sign comes from the leftward orientation of the z axis. If all of these angles are small
we therefore have
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For cancellation of the angular aberrations, we can integrate the expression AA AA0 1 0+ = , and get

n z y
c− + =1

4

3 4
a f κ constant     ,

or z y
n

zc c=
−

+
κ 3 4

04 1a f     , (10.3)

where zc0  is a constant, for the reflection of all rays through the paraxial focus; spherical aberration is
thus corrected to third order. This is a surface for which the slope is small at small y, so that paraxial rays
suffer little deviation, but that provides large enough deviation for marginal rays to reach the same focus.
It is illustrated in Figure 10.3.

The preceding is only the simplest and most obvious prescription for a Schmidt corrector. In practice
somewhat smaller aberrations are obtained not by correcting all rays for the paraxial focus, but instead for

Figure 10.2: aberration compensation in the Schmidt camera.
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a focus at the position of the circle of least confusion. We have seen the circle of least confusion before, in
computer ray-traces of spherical surface systems; for instance in problem 6 on Homework Problem Set #2,
in which a spherical-mirror telescope with the same paraxial parameters as a classical Cassegrain and a
Ritchey-Chretien exhibits its smallest RMS image diameter slightly closer to the mirrors than the other
two telescopes. The position of the circle of least confusion can easily be estimated graphically, as in
Figure 10.4. Calculations too detailed to include here indicate that this position actually lies three-quarters
of the way from the paraxial focus to the marginal focus, in good agreement with Figure 10.4. With a
glance at Equation 7.13 we see that the distance of this point from the paraxial focus is

∆f y
LC = − 3

16
0
2κ

    , (10.4)

Figure 10.3: Schmidt camera with corrector prescribed by Equation 10.3. The coordinate
system of Figure 10.2 applies, and the integration constant zc0  has been set equal to the
sphere’s radius. For clarity, the surface relief for the corrector’s second surface has been
drawn at a scale a factor of 100 larger than that used for the rest of the drawing.

Figure 10.4: on-axis rays reflected from a spherical mirror, viewed near the focus.
Distances are indicated from the paraxial focus to the circle of least confusion (LC) and
the marginal-ray focus.
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where y0 is the off-center distance for marginal rays. There are of course on-axis rays that reflect through
the axis in this position without a corrector; the corresponding off-center distance ′y  for these rays is
given by Equation 7.13 again,
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To design a corrector for a focus at the circle of least confusion the appropriate reference mirror surface
needs to have its focus there; if we choose a reference paraboloid with its apex on the spherical mirror it
will have an apex curvature ′κ  different from the sphere’s curvature, and given by
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Now the surface displacement between reference and sphere is

∆z y y y

y y y

= ′ − −

= −

κ κ κ

κ κ

2 2 3 4

3
0
2 2 3 4

2 2 8
3

16 8
,

(10.9)

and Equation 10.3 for the condition of cancellation of angular aberrations becomes
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This result is depicted schematically in Figure 10.6, and compared to the result of Equation 10.3 in Figure
10.6. It gives rise to a corrector thickest at the center and thinnest at radius ′ =y y0 3 2/ , that deviates all
rays except those incident on these thickest and thinnest spots.



Astronomy 203/403, Fall 1999

 1999 University of Rochester 5 All rights reserved

Figure 10.5: Schmidt camera with corrector prescribed by Equation 10.10. As in Figure
10.3, the integration constant zc0  has ben set equal to the sphere’s radius, and the surface
relief for the corrector’s second surface has been drawn at a scale a factor of 100 larger
than that used for the rest of the drawing, and the apex of the figured surface lies at the
sphere’s center.
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Figure 10.6: cross section of the Schmidt corrector surfaces given by Equation 11.3 (solid
curve) and Equation 11.10 (broken curve), for zc0 1= κ  and for focus of all rays
respectively to the paraxial focus and the circle of least confusion, for cameras with
primary mirror radius a factor of three larger than the entrance aperture diameter. Both
axes are plotted in units of the aperture diameter; note the differences of scale. The apex
of each figure is placed at the center the sphere.
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Now, some coma, astigmatism and distortion are introduced by either corrector, because although any
ray bundle whose chief ray passes through the sphere’s center is on axis for the sphere, only the one
perpendicular to the entrance aperture is on axis for the corrector. These distortions are small compared
to those introduced by a conic-section mirror of the same diameter. However, it is interesting to note that
it is possible to cancel SA with a spherically-symmetric corrector. During the 1940s Bouwers and
Maksutov independently noticed that a dielectric with two spherical surfaces that are concentric with the
spherical mirror (and to which therefore all ray bundles are on axis) displaces, rather than deviates, off-
center rays outward by an amount steeply dependent on off-center distance. This of course is the
direction such rays would have to be placed in order to be reflected through the paraxial focus. Bouwers
and Maksutov showed that by judicious choice of the corrector index and curvatures this scheme could be
used to cancel spherical aberration; coma, astigmatism and distortion are also obviously absent. The only
distortion remaining is Petzval field curvature; here manifest as the still-spherical focal surface.

Figure 10.7: Bouwers-Maksutov camera, with all spherical surfaces concentric and with
corrector index and radii chosen to eliminate third-order SA. The outward displacement
of the marginal rays has been exaggerated greatly for clarity.

10.2 Large-diameter spherical primaries with multiple-element correctors

Spherical mirrors are easier to fabricate and test than the other conics. Because “easier” often means “less
expensive,” spherical primary mirrors are sometimes considered even when designers are not
particularly interested in having a large field of view. Prime examples are the 305 m diameter Arecibo
radio telescope in Puerto Rico, and more recently, the 10 m Hobby-Eberly Telescope (HET) in west Texas
(Figure 10.8). In these cases the designers chose spherical primaries to enable tracking of celestial objects
essentially by moving the detectors around near the prime focus, instead of by moving the whole mirror
and telescope assembly. This would enable a huge cost savings for telescopes in these sizes. That this is
possible is illustrated in Figure 10.9 (or, for that matter, in Figure 10.1). Only a fraction of the fixed-
position primary mirror is used at any given time, and this fraction determines the maximum length of
time that a celestial object may be tracked – the smaller the fraction, the longer the tracking time.

The HET mirror is hexagonal in projection, and is made up of 91 hexagonal mirror segments. This is
another area in which the HET designers took advantage of the spherical geometry: these 91 segments are
identical, and all spheres themselves, so to the extent that they can be mass-produced an economy of scale
can be achieved. The 36 segments in each primary mirror of the Keck Telescopes, on the other hand, are
all off-axis hyperboloids, with curvature that depends upon a segment’s position in the primary-mirror
mosaic
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As one might imagine from the size of such primary mirrors, the spherical aberration is truly huge, and
its correction is quite a challenging optical design project. When the Arecibo telescope was first built, the
fact that a single detector was used in its focal plane (rather than an imaging detector array) was put to
use in the solution of the spherical aberration problem with a line feed. Note that meridional rays from a
point source, incident on opposite sides of the mirror, intersect along the radius of the sphere that points
back to the point source, and that these intersection points are distributed along a segment of length ∆f ,

   

Figure 10.8: the Hobby-Eberly Telescope. Left: artist’s rendition of telescope within dome.
Right: photograph of the completed, spherical primary mirror.
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Figure 10.9: spherical-primary telescope with single-element Gregorian corrector. The
position of corrector and marginal rays is shown for two different pointings of the
telescope, in solid or dotted lines.



Astronomy 203/403, Fall 1999

 1999 University of Rochester 8 All rights reserved

given to fifth order by Equation 7.13. The line feed is a slotted linear waveguide, = −∆f  in length,
designed to pick up the light along this linear image and conduct it to the detector in the proper phase:
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The relevant dimensions of Arecibo are y = 152 4.  m , 1 265 18κ = .  m , and ε = 0 , which gives = 27 32.  m
(!) for a feed that receives light from the entire telescope primary *. Originally the telescope was used with
a line feed 12.19 m long, that received light from a 213.36 m diameter portion of the primary. This enabled
celestial objects to be tracked up to about 11  from the primary mirror’s axis without any of the detector’s
field of view spilling off the primary, and up to about 20  without losing more than half the signal.

Homework problem 10.1: An Arecibo-like telescope has a primary mirror with curvature radius r and
diameter D, and a detector that can see a circular portion of the primary with diameter d. Show that the
detector can view celestial objects within an angle

θ = −arcsin arcsinD
r

d
r2 2

(10.12)

of the primary mirror’s axis, without any of the detector’s field of view missing the primary mirror.

Suppose that a telescope the same size as Arecibo is built on the Earth’s equator, and is used to observe an
object lying on the celestial equator. If one wishes not to let the detector’s view spill off the primary
mirror, what is the maximum length of time that this object can be observed?
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Figure 10.10: schematic diagram of the four-mirror corrector of the Hobby-Eberly
Telescope (L. Ramsay, Penn. State University).

                                                          

* This result is a bit short, because SA of order higher than fifth has become significant. The line feed that
can receive light from the entire primary mirror is actually 29.5 m long, to account for higher-order SA.



Astronomy 203/403, Fall 1999

 1999 University of Rochester 9 All rights reserved

Nowadays, reflective Gregorian style correctors are employed on both the Arecibo and Hobby-Eberly
telescopes. To achieve adequate image quality it winds up being necessary to use several mirrors each
telescopes corrector: two in the case of Arecibo, and four in the case of the Hobby-Eberly telescope. The
latter is illustrated in Figure 10.10. An impression of the steps required for such SA correction can be
gained in simpler fashion in homework problem 10.2.

Homework problem 10.2: A single-element Gregorian spherical-aberration corrector. You will do three ray
traces in this problem; make sure they’re all done with the same number of rays.

a. Consider a 200 cm diameter, spherical mirror with focal length 400 cm and a 40 cm, circular hole in
the center. (The role of the hole will be made clear below.) Use RayTrace, with parallel on-axis rays
(far field, DX=DY=0), to plot a spot diagram and to compute the RMS spot size at the position of best
focus. Calculate the plate scale for the mirror, and use this to find the angular spread on the sky
corresponding to this blur.

b. Next, consider a 200 cm diameter paraboloid mirror with the same focal length and central-hole size as
the sphere in part a. Use with this an ellipsoidal secondary mirror, 40 cm in diameter, with on-axis
focal lengths 80 cm and 40 cm, but instead of using the usual Gregorian arrangement, place the far
focus in coincidence with the paraboloid’s focus, so that the final image is formed closer to the
ellipsoid’s apex than the prime-focus image, as shown in Figure 10.9. Calculate the apex radius of
curvature and eccentricity this mirror must have, and the plate scale at the final focus. Now use
RayTrace and on-axis rays to plot a spot diagram and to compute the RMS spot size at the position of
best focus, and calculate angular size on the sky corresponding to this blur.

c. Now, bend the mirrors in the telescope from part b: leave the apex curvatures and distances fixed, but
change the eccentricity of the primary to zero (thus transforming it into the spherical mirror of part a),
and calculate the eccentricity the secondary must have in order that third-order spherical aberration is
corrected. Use these new eccentricities in RayTrace to plot a spot diagram and compute an RMS spot
size. Calculate the angular size on the sky corresponding to this blur.

d. By what factor has the blur decreased from part a to part c? Account for the secondary’s
magnification in your answer.

e. Why isn’t the blur in the telescope of part c as small as that of the telescope in part b?


	Lecture, 5 October 1999
	Aberration compensation for spherical primaries: the Schmidt camera
	Large-diameter spherical primaries with multiple-element correctors


