Astronomy 203/403, Fall 1999

11 Lecture, 7 October 1999

One needs additional small optics, besides the telescope, to accommodate the special requirements of
instruments. Most of the functions of these additional optics will be obviously necessary, such as those
that prepare beams properly for spectrometers or polarimeters, or those that change the plate scale at the
final focus in order to make the resolution a better match for the detector size. The extra optics can also
make it easier for the telescope and instrument to achieve ideal performance, for instance by correction of
remaining aberrations, or rejection of stray light. Today we will discuss a few concepts that are important
in the design of these auxiliary optics.

11.1 Petzval field curvature and field lenses

The fifth (and last) of the third-order aberrations is Petzval field curvature. It is evident most clearly in the
spherical focal surface of an SA-corrected spherical-primary telescope like a Schmidt camera (see Figure
10.1 or 10.9), since to third order all the off-axis aberrations are absent ab initio, and third-order SA is
corrected. It is possible to show that all the focal surfaces in any given optical system are related by simple
transformation to a single invariant surface, called the optical system’s Petzval surface; this result is of
course called Petzval’s theorem. The curvature xp of the Petzval surface in a system with k optical surfaces

is given by

k
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where & is the apex curvature of the jth optical surface, n; the index following the jth optical surface,

and the usual raytracing sign convention on # is assumed - that is, that n changes sign on reflection. The
surface is considered invariant in the sense that the result does not depend upon the distances between
the optical surfaces, only upon the straight algebraic sum of the powgrs of these surfaces. To prove
Petzval’s theorem is complicated, and we will not attempt to do so here ~. However, the result is simple
enough to apply: all of the focal surfaces are flat if the curvature of the Petzval surface vanishes:
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Since it doesn’t matter what the separations of these optical surfaces are, judicious choices of the indices
and apex curvatures can result in a flat field and a finite focal length.

The most common astronomical application of Petzval’s condition, Equation is the use of a field lens
to flatten the Petzval surface of a telescope. Note that the sum in Equation for a system of k mirrors
in an all-reflecting telescope is

" See Born and Wolf, Principles of optics, sixth edition, pp. 225-226, or Schroeder, Astronomical optics, pp. 82-
88, for a proof.
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where f; is the focal length of the jth mirror; thus the field will be flattened by placing a lens with focal

length fand index n given by

=y (11.4)

very close to the focus, as in [Figure 11.1} Placing such a lens at the focus does almost nothing to the focal
position or other aberrations, if the lens is thin. However, it flattens the field for the detector right behind
this lens, allowing the image received by this detector to be in sharp focus.

Field lens

Detector

Figure 11.1: field-flattening lens for Cassegrain telescope. The size of the lens is
exaggerated for clarity.

11.2 Re-imaging optics, collimators, cameras and zooms

Rarely are the pixels on available detectors a good match for the resolution of a given telescope, so even if
broad-band imaging is the project one has in mind, one will often need a lens or mirror system that will
convert the plate scale to a more convenient value. Such reimaging optics are usually part of the
instrument, rather than the telescope. Individual instruments are generally intended to cover rather
smaller ranges of wavelengths than the telescopes on which they are used; the optics are also quite small
as well. Thus the structural and chromatic difficulties that apply to refracting telescopes abate, and one
often sees lenses used, especially at visible and near-infrared wavelengths.

The job can obviously be done with a single lens. One usually uses more, after considering the optical
requirements on the filters that precede the detectors (see Lecture 25), and the rejection of stray light and
thermal background light (see below). A common lens or mirror configuration is simply a pair of

converging optics, one (the collimator) placed a focal length away from the telescope focal plane and the

other (the camera), as in Note that since the diameters necessary for these optical elements are
relatively small, lenses with spherical surfaces are often good enough despite their spherical aberration;

since for a single surface TSA o< yS and y is small, the SA can still be much smaller than the telescope
aberrations.
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Figure 11.2: collimator and camera lenses for reimaging; on-axis (solid lines) and off-axis
(dashed lines) shown.

Homework problem 1h.

a. Show that the plate scale at the detector, in|[Figure 11.2 is f;/f, times the plate scale at the telescope
focus.

b. Suppose the two ray bundles in|Figure 11.2| represent light from two point objects separated by a
small angle 0in the sky, and the effective focal length of the telescope is f. Show that the (small) angle
between the two bundles of rays in the collimated portion of the beam is 6’ =(f/f;)6.

Homework problem [[1]2. The arrangement of the lenses in planoconvex with the curved
surfaces facing the collimated light, was chosen on purpose, to minimize the SA of these lenses. Use
RayTrace to demonstrate that this is true. Take the lens focal lengths to be 20 cm and 30 cm and to be
separated by 50 cm. Plot spot diagrams at the detector focus, and measure the RMS spot size at the
paraxial focus, for the lens shapes shown in the figure, for the lenses reversed (flat sides facing the
collimated beams) and for the lenses replaced with equiconvex lenses of the same focal lengths.

It is also possible to produce optics with continuously variable plate scale for a fixed detector and
telescope position, by replacing the second lens in with a zoom lens. A simple example of a
three-element zoom, the Pan-Cinor Zoom invented by Cuvﬂlie@ in 1949, is illustrated in It
works by motion of the first and third lenses by equal distances’, with the second lens fixed in position.
Over a fairly wide range of displacements the position of the best focus changes very little, but the plate
scale (or equivalently the reciprocal of the system’s effective focal length) can change substantially,
usually by a factor of three or more.

Homework problem 11.3. The numerical inputs for this problem were taken from the example Pan-Cinor
treated in Kingslake’s Lens design fundamentals, pages 63-66.

a. The focal lengths of the lenses in are f,, fp, and f.., from left to right. Show that the back
focal distance i is given for A=0 by

" Thus it requires only one translation mechanism. Such a system is called an optically compensated zoom
lens. There are other zooms for which the movable lenses have to be translated at different rates or in
different directions, which is done with systems of gears and cams driven by one control “knob.” These
are called mechanically compensated zoom lenses.
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Figure 11.3: the Pan-Cinor zoom.

i = [dD_fb(D_d)]fc
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b. Show similarly that the plate scale is

pg_ D= fo(D=d)~ fD- fofc
fafvfe

c. A certain zoom has f, =7.15959 cm, f;, =-1.95959 cm, f.=3.35410 cm, D = 4.15959 cm and d =

1.69451 cm. Replace d and D by d+A and D+A in the equations above, and plot the image
displacement,

8(A) =i (A)+d+A-[i(0)+d] ,

and the plate scale as a function of A from -0.5 to 2.5 cm. Show thereby that the image is displaced by
at most 0.068 cm, and that the plate scale increases by a factor of 3.0, as A runs from zero to 2 cm.

11.3 Stops and pupils

“Stop” is the name given to apertures or masks within an optical system that determine how much of the
input light gets through it. The aperture stop determines how much light enters, and the field stop, how
much leaves or is detected. In astronomy, the aperture stop is most often the edge of the primary mirror,
but we have already seen one major exception to this rule, in the entrance aperture of the Schmidt camera.
Another exception is provided by infrared-optimized telescopes, in which the secondary is slightly
undersize (or the primary oversize, depending upon your attitude), and for which the secondary’s edge is
the aperture stop. The effective field stop of a complete astronomical telescope instrument system is
usually the edge of the detector or detector array in the final focal plane.

“Pupil” is the name given to images of the aperture stop. The exit pupil is the image of the aperture stop as
seen through all of the following optics (i.e. from the final image’s point of view), and the entrance pupil is
the image of the aperture stop as seen through all of the preceding optics - that is, as seen by the object.
Thus for most astronomical telescopes (non-Schmidt, non-infrared), the entrance pupil and the aperture
stop are identical, there being no preceding optics.
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Figure 11.4: optical setup for Example 11.1.

It is very useful to keep track of stops and pupils in optical systems. By calculating their sizes and doing
some simple ray tracing one can estimate the sizes necessary for optical elements to catch all the light they
are intended to reflect or refract. (For an optic to do otherwise is called vignetting.) Also, pupils that are
real images of the aperture stop are good places to put baffles, opaque masks that reject stray light.
Geometrically, all the light that deserves to get through all the optics has to be contained within the
images of the aperture stop, and thus none of this light is affected by placement of an opaque screen with
a hole the same size as the pupil, at the location of the pupil. Such a screen may, however, block light
from other sources that could reflect around and find its way to the detector. Such stray light can be
produced in a variety of obvious ways, such as city lights, lamps left on within the telescope dome. It can
even come from the optics and their enclosures themselves, at long wavelengths: blackbody emission
from the optics would dwarf the signal from celestial sources at infrared wavelengths, without the use of
cryogenic baffles and optics. A mask the size and shape of a pupil, located at the pupil’s position, is
commonly called a Lyot stop, after B. Lyot, who discovered its utility while designing coronagraphs.

Example 11.1

a. A D =40 cm diameter, f= 60 cm focal length lens is used as a telescope, with two 5 cm focal length lenses, set up
as a collimator and camera, as shown in|Figure 11.4. The lenses are separated by the sums of their focal lengths: 65

cm for the first two, 10 cm for the next two. Find the location and diameter of each pupil, and indicate the best pupil
to use as a Lyot stop.

The first pupil lies a distance

i =%=5.42 cm

01— f1

behind the first 5 cm lens, and has diameter

dy =D|my| -DL-333cm
01

This pupil lies 0, =4.58 cm in front of the second 5 cm lens, so
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i=-22 _ 550m
02 f

dy = Dy o) = dy %: 40 em

The second pupil is the exit pupil of the system, but is virtual, so it can’t be used as a Lyot stop. The other
one will do nicely, though.

b. We want the telescope to have a 2 degree field of view. How large in diameter do the 5 cm lenses have to be?

This means that rays as far off axis as #=1° are to be transmitted through the system. In between the
small lenses, such rays are 6"=(f/f;)0 =12° off axis. Consider two marginal rays, which having come in

on the edge of the primary must intersect the edge of the Lyot stop too. An inbound one must have
originated at a point i; tan6’+d/2 from the center of the collimator lens in order to intersect the Lyot stop

a distance d/2 from its center, as in Similarly an outbound marginal ray leaves the edge of
the Lyot stop and meets the camera lens a distance 0, tan6’+d/2 from its center. Thus the smallest that
the diameters of these lenses can be are

Dy =2i;tan60’+d =5.64 cm
Dy =20y tan 6’ +d =5.28 cm

in order that no light be lost.

Lyot stop

Figure 11.5: geometry of off-axis marginal rays between collimator and camera in
Example 11.1.
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Figure 11.6: tracing chief and marginal rays all the way through the telescope of Example
11.1, both on axis (red) and off axis (blue). For clarity we use here a larger off-axis angle,
and larger -diameter collimator and camera, than used in Example 11.1.

Homework problem 11.4. UR infrared astronomers frequently use their newest infrared camera, built by
Profs. Bill Forrest and Judy Pipher, at the Wyoming Infrared Observatory. WIRO has a classical
Cassegrain optimized for infrared performance. The primary mirror is a 2340 mm diameter paraboloid
with focal length 4800.1 mm. The secondary has diameter 202.8 mm and focal lengths 431.7 mm and
5380.0 mm. Its edge comprises the aperture stop. 269.5 cm past the Cassegrain focus there is an
achromatic doublet lens with focal length 76.37 mm. The detector array sits at the final focus.

a. Calculate the diameter and position of the entrance pupil.

b. Calculate the diameter and position of the exit pupil. Is it real or virtual? Would it make a good Lyot
stop?
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