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22. Lecture, 16 November 1999

22.1 Coherent detection

Another way to detect light using photodetectors is to use the same method your radio uses: coherent, or
linear, detection. In this method the wave properties of light are used explicitly, and the measurements
amount to the determination of the amplitude and phase of the electric and magnetic fields in the
radiation emitted by the distant source. Coherent detection itself comes in two forms that turn out to have
the same sensitivity in ideal systems:

1. coherent preamplification, in which incident light is passed through a medium that can impart gain,
amplifying the wave amplitudes directly. The output of such a preamplifier is usually detected by a
heterodyne receiver (see below), though an incoherent detector could be used instead; the idea is for
the gain to be so large that any detector could be used subsequently without affecting the signal-to-
noise ratio. The paradigm for astronomical coherent preamplifiers is the maser, and the basic
principles involved are those that apply to the (by now) more familiar oscillator forms of masers and
lasers. We will discuss these devices superficially below. In the past decade the highest frequencies at
which transistors can be used as coherent preamplifiers have crept up to tens of GHz (wavelengths
down to 1 cm or so) with the development of HEMTs (see §18.8); these components are currently
used in most radio-astronomical coherent preamplifiers.

2. heterodyne detection, in which the signal one wishes to measure is mixed with coherent light (constant
frequency, phase and amplitude) before shining on the detector. The additional coherent light, which
comprises a frequency and phase reference, is called the local oscillator (LO). The detector used here
has to have a response time short enough that currents can exist in it at the frequency difference
between the signal and LO: that is, at the frequency of beats between the signal and LO waves.
Amplitudes and frequencies of the beats can be measured by the normal techniques of low-frequency
electronics. In what follows we will use ν  as the symbol for signal and LO frequencies (light), and f
for the lower, beat, frequencies (currents). 

Heterodyne detection is used commonly – practically universally – by astronomers at wavelengths
longer than about 1 mm , so we will discuss this technique in detail.

22.2 Sensitivity of heterodyne detection

Consider a photodetector used in heterodyne mode in a telescope system similar to that used in §21 (see
Figure 22.1). Suppose that the beam of LO light is matched to the signal beam (that is, has the same beam
waist size and wavefront curvature) and is injected into the signal path by use of a diplexer that attenuates
the signal and background power negligibly. In most applications the power available from the local
oscillator is many orders of magnitude larger than the signal and background power, so the diplexer can
consist simply of a thin dielectric beamsplitter that transmits virtually all of the incident light but still
reflects enough LO; we will assume that this is the case in the following. Note, however, that there are
many instruments in which more complicated schemes such as Michelson interferometers or folded
Fabry-Perot interferometers are used to combine the beams. At the surface of the photodetector (z = 0),
the field from the LO is

E ELO LO
i te LO= −

0
ω , (22.1)
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Figure 22.1: signal chain for calculation of sensitivity of a heterodyne receiver.

where ω πνLO LO= 2 .The signal and background are not generally monochromatic or characterized by
constant phase; however, we can consider for now one frequency component and phase of the signal,

E ES = − +
0S

i te ω φb g , (22.2)

at the detector’s surface. We will consider the field amplitudes to be real. (For simplicity we can leave the
background power out for now; it will return in a little while.) The photocurrent induced by these two
radiation fields is simply

I =
η

ω
GqP

, (22.3)

where P P P P PS LO S LO= ′ + ′ = − +τ ε τ1a f  is given in terms of the fields at the detector’s surface by

P c daS LO
A

= +z8

2

π
E E , (22.4)

and where A is the detector’s area in the focal plane, and cgs units are used. Suppose furthermore that the
detector is uniformly illuminated by both signal and LO; then
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Assume that the same polarization if used for signal and LO, and define
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; (22.6)

then we can write

P P P P P tLO S S LO LO S= + + − −0 0 0 02 cos .ω ω φc h (22.7)

The first two terms in Equation 22.7 give rise to DC photocurrents, and the third term is the beat between
signal and LO (see Figure 22.2), which oscillates at the intermediate frequency (IF), f LO S= −ν ν . Usually
the detector is followed by an amplifier that works only on the IF component of this current,

i t
Gq P P

tS
S LO

S
LO Sω

η
ω

ω ω φ, cos ,b g c h= − −
2 0 0 (22.8)

or an associated voltage i t RSω ,b g , as shown in Figure 22.1. The power detected at the output of the IF

amplifier is proportional to the IF electrical power dissipated in the resistor R, or

i R G q P P R tS LO

S
LO S

2
2 2 2

0 0
2 2

24
= − −

η
ω

ω ω φcos .c h (22.9)

Since it oscillates periodically, the average of this IF power over a large number of beat oscillation periods
is the same as the average over a single period, 2π ω ω/ LO S−b g :
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Figure 22.2: beats.
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In terms of power at the system input rather than at the detector surface, this is (see Figure 22.1):

i R
G q P P R

h
S LO

S

2
2 2 2 2

2 2
2 1

=
− ε τ η

ν
a f

. (22.11)

This time, we consider our electrical signal to be a power, rather than a current.

Note that because cos cosω ω ω ωLO S S LOt t− = −b g b g , a frequency f in the photocurrent corresponds to

the detection of two signal frequencies, ν νS LO f= ± , that therefore cannot be told apart simply from the
IF signal. Frequencies of detected light greater than that of the LO are called the upper sideband, and lower
frequencies are called the lower sideband. Separation of the two sidebands generally requires additional,
interferometric optics to transmit one or the other, and this is desirable if, for instance, a spectral line is
observed in one sideband, and one would like to avoid the additional noise from detection of the other
sideband. In the following we will restrict our attention to heterodyne systems that detect both sidebands,
and are called double-sideband receivers.

Now we shall deal with the noise. We assume again that the IF amplifier is designed to render Johnson
noise negligible compared to shot noise, so the IF noise power, at the input of the IF amplifier, is, from
Equation 21.7,

∆ ∆i R I R GqIR fN
2 2 2FH IK = =

sn
β , (22.12)

where I is the average total current in the detector, and the label “sn” just stands for shot noise. Here
follows the subtle trick of heterodyne detection: suppose that the LO power on the detector is by far the
largest component of the total power:

I I GqP
hLO

LO

LO
≅ =

τη
ν

, (22.13)

so ∆ ∆i R Gq GqP
h

R fLO
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β τη
ν

. (22.14)

Let us assume that the signal and LO frequencies are very similar ω ω ωLO S S− <<b g . Then the (double
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independent of the LO power (!). Turn the LO power up high enough, increasing the LO photocurrent shot
noise all the way, and eventually the signal-to-noise ratio doesn’t depend upon LO power or this noise.

The form of Equation 22.14 is a good illustration of the workings of heterodyne detection, and turns out to
be correct at the shortest wavelengths at which the technique is used by astronomers. It is, however,
incomplete; it turns out that in using simply the LO shot noise we have omitted a noise process that is
important at longer wavelengths, where heterodyne detection is used most often.

22.3 Background radiation and its fluctuations in heterodyne detection

We have only dealt so far with signal and LO power, since we had the P PS LO0 0<<  limit in mind all along.
It is not much trouble to account also for detection of background power, because its beats with the LO
would have exactly the same form as those of the signal – one would therefore expect to repeat the
derivation of Equation 22.11, changing S for B – and because the beats between signal and background
would be negligibly small compared to the beats between either with the much more powerful LO. Thus
Equation 22.11 becomes (see Figure 22.1)

i R G q P R
h

P PLO

S
S B

2
2 2 2 2

2 2
2

1= − +
τ η

ν
εa f . (22.16)

Just as is the case for direct detection, the form of this expression shows that we have to make two
measurements, in practice, to determine PS  for a celestial object: one with the telescope pointing at the
object, which leads to power at the input to the IF amplifier given by

i R G q P R
h

P PLO

S
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1FH IK = − +
τ η

ν
εa f , (22.17)

and one with the telescope pointing at blank sky:

i R G q P R
h
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2

2
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2 2
2FH IK =
τ η

ν
, (22.18)

so that the difference between the two measured powers is proportional to the quantity we’re actually
trying to measure, PS :

i R i R
G q P R

h
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2 2
2 1FH IK − FH IK =

− ε τ η
ν

a f
. (22.19)

Thus the background can be separated from the signal. However, it is essentially always the case that
P PB S>>  (as well as P PLO B>> ), since interesting astronomical objects are faint. This results in a
contribution to the noise by background radiation, and this cannot be subtracted off.

That the power in blackbody radiation must fluctuate was really shown above (§20.3), when we discussed
the limiting cases of the photon probability distribution; we need merely flesh out this claim here.
Suppose a single-mode beam is used, and a single polarization (the LO’s) is selected; then
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P P B T A h
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2

3

2
2ε ν ε ν νλ ε ν νν a f∆ Ω ∆ ∆ , (22.20)

where as usual N eh kT= −
−ν/ 1

1e j . The average value of PB
2  is, analogously,

P h NB
2 2 2= ε ν ν∆a f , (22.21)

and the variance of the background power is

∆ ∆ ∆ ∆ ∆P h N h N N P h NB B
2 2 2 2 1 1= = + = +ε ν ν ε ν ν ε ν νa f a f d i d i , (22.22)

where we have used Equation 20.34 in the last step. At submillimeter wavelengths and longer
λ µ≥ 350 mb g , and common ambient temperatures (T ~ 300 K), N  is considerably greater than unity, so

∆ ∆P h N PB B
2 2 2 2≅ =ε ν νa f , (22.23)

or ∆P PB Bb grms = ; (22.24)

that is, the background power at these wavelengths follows Gaussian statistics, and the rms fluctuations,
far from being small, are as large as the average background power itself.

22.4 The quantum limit to heterodyne detection

If our heterodyne detector can detect the background, then it can detect the background power
fluctuations characterized by Equation 22.24 as well. The detected fluctuations are another form of noise,
and need to be added to the shot noise power (Equation 22.13) in order to obtain a correct form for the
signal-to-noise ratio. This time, however, the noise is not simply due to the finite charge on the electron; as
we’ll se below (§23.2), it is due to the uncertainty principle.

From Equation 22.16 we see that the background power fluctuations detected by our heterodyne receiver
give rise to electrical power, referred to the input of the IF amplifier, of
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ν
τ η

ν
b g . (22.25)

We should add this term to Equation 22.13 to get the total IF noise power, referred to the amplifier imput:
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βτη
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(22.26)

Note that since the frequency of the LO is fixed, the signal bandwidth ∆ν  is equal to the IF bandwidth
∆f IF  for a single sideband, or 2∆f IF  for double-sideband response. We will continue to assume that a
double-sideband receiver is used, for which Equations 22.20 and 22.20 therefore give
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The IF signal power is given by Equation 22.19, and the double -sideband signal-to-noise ratio is
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The only difference between this expression and the “incomplete” Equation 22.15 is the last factor. Note
that since N >> 1 , as it is at long wavelengths and common ambient temperatures, this factor can reduce
the signal-to-noise ratio significantly if τη β/  and ε  are large enough. Remember that the factor of two
accompanying the εN  factor is from the assumption that background fluctuations were detected in both
sidebands, and that ∆ ∆ν = 2 f IF ; this factor goes away, and ∆ ∆f IF = ν , for single sieband receivers

Normally in radio astronomy the bandwidth is on the order of ∆ ∆f IF = = −ν / .2 0 01 1 MHz , corresponding
to integration time on the order of ∆ ∆′ = = −t f IF1 2 0 5 50/ .  sµ . As you might imagine, one normally
averages for much longer than a small fraction of a second. As we have seen repeatedly, fluctuations
“integrate down” – become smaller – in proportion with the square root of the exposure time. Thus if the
signal and noise are averaged over an exposure time ∆ ∆t t>> ′ , the signal-to-noise ratio increases by the
factor ∆ ∆t t ′ , which gives
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This is the complete expression for the signal-to-noise ratio of an ideal, quantum-noise limited double-
sideband heterodyne receiver. As we did for incoherent detection, we can define a noise equivalent
power for the ideal heterodyne receiver. This would be the value of P fS / ∆  that corresponds to S/N = 1,
with ∆ ∆f t= 1 2/ :
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The same factor-of-two differences between double-sideband (used here) and single-sideband response
that we noted in connection with Equation 22.28 also apply here.
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