
Lesson 3: finding and seeing structure in images

M 101, LRGB (Mees Observatory image)
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Deconvolution and stretching
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Sharpening images: deconvolution

If your images have very high S/N, you can recover 
some of the angular resolution you lose from our 
normally not-very-good seeing.

 Atmospheric turbulence broadens what 
should look like a diffraction spot, in the 
manner of convolution by a Gaussian:

 At Mees the diffraction limit is 0.22 arcsec in 
the G filter, while the seeing is usually 2 arcsec 
or so.
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Pont-spread 
function 
(PSF), a.k.a. 
“seeing disk.”



Deconvolution (continued)

The best way to eliminate the blurring effects of seeing – which are due to different phase 
shifts in light that takes slightly different paths through the atmosphere – are 

 to put the telescope in outer space, or

 to correct the phases in real time with the help of a reference object in the same field of 
view as the target. This method is called adaptive optics. Brief intro here. 

The first of these methods is the only one that works perfectly:

 adaptive optical systems are complex and expensive;

 they are even more complex and expensive if a field much bigger than about an 
arcminute needs correction (our system is 15.4 arcmin square);

 they currently don’t work well at visible wavelengths. At least the ones astronomers 
have, don’t. 
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http://www.pas.rochester.edu/%7Edmw/ast203/Lectures/Lect_17.pdf


Deconvolution (continued)

But in the data processing, the blur can be ameliorated a bit.

 If one knew exactly what the point-spread function s is, and if there were no such thing 
as noise or systematic error, then one can determine the object’s flux density 
unambiguously, because of the convolution theorem:

 Thus one would deconvolve the image:

• Fourier-transform the observations (f’) and the point-spread function (s), divide 
the two results to produce F, then Fourier-transform F to produce the object’s real 
flux density f, unsmeared by seeing. 

• Which would be limited by diffraction, of course.
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Deconvolution (continued)

However, life is rarely so simple. There is noise and systematic error, and it messes 
everything up. Separating the measurable functions into noiseless/error-free terms and 
noise/error, as

one sees that the convolution theorem could still help, but additional constraints on the 
noise terms would be necessary. 

 There are rarely enough constraints to do this algebraically, e.g. N equations in N
unknowns solvable by linear-algebraic techniques.

If we know what out PSF shape is, and we measure structures that are ever so much broader 
than that at high S/N, we are justified in saying that we know something about those 
structures on scales smaller than the PSF. 

How can we use such observations, in cases in which we can’t do a simple deconvolution? 
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Diversion: how CLEAN works

Classic reference: Hogbom 1974; nice 
compact intro: Wilner 2018, from which I 
swiped some images. 

 In radio interferometry, telescopes and 
instruments measure the amplitude 
and phase of light from the target 
field.

 Because both amplitude and phase are
measured, signals from an array of
telescopes can be combined as if they
were “facets” on one much larger
telescope, with size = the separation of
the array elements: a larger aperture is 
synthesized from the array.
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Distances, projected onto the plane of 
the sky, between pairs of an eight-
telescope array (the SMA). Continuous 
trails result from the changing aspect 
of each pair’s baseline as the target is 
tracked across the sky. 
From Wilner 2018.

https://ui.adsabs.harvard.edu/abs/1974A%26AS...15..417H/abstract
https://science.nrao.edu/science/meetings/2018/16th-synthesis-imaging-workshop/talks/Wilner_Imaging.pdf


CLEAN (continued)

 It turns out that mutual coherence of 
the signals from two telescopes in the 
array, which can be calculated from 
those signals, is one Fourier component 
of the light-intensity distribution in the 
target field. 

• This is the Van Cittert-Zernike 
theorem.

 Thus the Fourier transform of the 
mutual coherence of the pairwise 
signals from all the telescopes in the 
array give the image of the target field 
at the diffraction-limited resolution of 
the array size, not the telescope size. 
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2-D Fourier transform of a uniform 
amplitude and phase at those 
distances, i.e. the point spread 
function. This is called the dirty beam
in radio-astronomy parlance. From 
Wilner 2018.

http://www.pas.rochester.edu/%7Edmw/ast203/Lectures/Lect_16.pdf


CLEAN (continued)

 So far this isn’t different from how a 
diffraction-limited telescope would work. 

 But the diffraction pattern of the array of 
“facets” is not the same as that from a 
completely filled aperture.

 In particular, the sparse coverage by the 
telescope array of the synthetic aperture 
leads to sidelobes:

• diffraction peaks that are much 
brighter, relative to the central peak, 
than the outer rings are relative to 
the peak in a single-telescope 
diffraction pattern. 
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The clutter of sidelobes is why this is 
called the dirty beam, and why its 
cure was called CLEAN. From Wilner
2018.



CLEAN (continued)

To remove the sidelobes, CLEAN does the 
following:

 Finds the brightest spot in the dirty 
image.

 Subtracts from that spot a dirty-beam-
shaped intensity, some fraction (usually 
0.1) of the peak intensity.

 Keeps track of where it subtracted that
from. This the list of CLEAN 
components.

 Repeat.

 Keep going until a pre-set brightness
limit is reached.
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CLEAN (continued)

 Then restore, at the position of each clean 
component, the signal of a clean beam:

• where a clean beam is a Gaussian fit 
to the main peak of the dirty beam.

 The resulting clean image is considered to
be the true intensity distribution plus the 
original noise.

• …though, annoyingly, the
procedure has never been proven to
converge on the true intensity 
distribution.

Last three images: artificial ALMA 
observations of a model image plus noise, and
the result of CLEANing (Wilner 2018).
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FWHM size of 
clean beam



Deconvolution (continued)

 Our problem is that we don’t know what our dirty beam shape is, noiselessly.

 So generally we have too few measurements to solve for all the unknowns in

 But all is not lost: one can instead the range of solutions for f consistent with what 
constraints there are, and then select among the range for the solution which is most 
probable. 

 This devolves the question to: how does one rank the solutions by probability? 

 There is no best way to do this, nor – once again – a way so far which can be proven to 
converge on the exact solution for f. 

 Generally one proceeds by defining a measureable property of the image related to 
sharpness, and finding the solution corresponding to the maximum or minimum of 
that property. Routines like this include…
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Deconvolution (continued)

 Maximum-likelihood (Lucy-Richardson) deconvolution.
Related to CLEAN, as it decomposes objects into a sum of PSFs, but searches for the 
most likely coefficients in the restored-PSF sum under the assumption that they are 
Poisson-distributed, like shot noise. So it improves the PSF according to S/N.

 Positivity-constrained deconvolution.
Like Lucy-Richardson, but rectifies the results as one goes along to prevent the final 
answer from having unphysically-negative flux densities. (Which is fishy for many 
reasons.)

 Maximum-entropy deconvolution. 
Maximizes the “image entropy”                             , where pi is the 

probability that the difference in DNs between adjacent pixels has the value i. 

• The function has nothing to do with physical entropy, 
it’s named for the resemblance to this formula as the Stirling approximation 
applies to it.
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Deconvolution (continued)

CCDSoft v.5 does Lucy-Richardson deconvolution; CCDStack v.2.9 does positivity-
constrained and maximum-entropy deconvolution; and Photoshop CC has all three.

Caveats:

 None of these methods will improve the resolution of images by much more than a 
factor of two, and that only at very high signal-to-noise.

 The resolution will be seen to vary across the image, being better (sharper features, 
smaller stars) where S/N is higher – unlike the original.

 Maximum entropy deconvolution does not conserve energy: the resulting image will 
have a different total flux density than the original. 

• L-R and positivity deconvolution are booby-trapped against that.

 So NEVER use them, particularly maximum entropy, on images with which you want 
to do photometry. 
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NGC 891
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L, average of 24 5-minute 
frames



NGC 891, MEM 
deconvolved
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Note the higher contrast 
in the dust lanes and the 
filaments perpendicular 
to the disk. Also that the 
faint stars are brighter.



Stretching images

CCDs have DN linearly proportional to power collected; each pixel’s signal is sent out as a 
16-bit floating point number, and stored in the computer as a 64-bit number. None of this 
matches displays very well.

 Computer monitors only display eight bits of brightness (0-256), for the very good 
reason that eyes can only resolve that many shades of gray. Printing on paper is similar.

 Thus one must stretch (or compress, really) the huge range of astronomical brightness 
within an eight-bit range for display. 

 Photographic emulsion has a useful compressive feature built in to it, called reciprocity 
failure:

• Hypersensitized emulsion produces image density linear in power at low light 
levels, but the response becomes more like logarithmic with brighter lights. 
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Stretching images (continued)

Each of the image analysis programs we use has a variety of ways to stretch images, notably 
these:

 Gamma. This maps power exponentially into signal: 

γ = 1 is of course the same as the original image, but γ < 1 compresses the display 
brightness into a smaller range. A (“brightness”) and B (“background”) can be set 
separately.

 Logarithmic stretch:

An attempt to mimic what the eye itself does, but it has obvious problems if it’s 
possible for the pixels to have DN values of zero.
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( )display imageDN A DN B
γ

= +

( )display imagelog .DN A DN B= +



Stretching images (continued)

 Digital development process (DDP). This is an algorithm, developed by a professional 
physicist who happened to be an amateur astronomer, which is meant to mimic the 
useful features of reciprocity failure. 

• The algorithm is iterative and replicates the stages one would see in an exposed 
photographic plate immersed in developer; hence no equation.

 Arcsinh stretch. At large values, arcsinh(x) converges to ln(x); at small values it’s linear 
(like ln(x)) but arcsinh(0) = 0 (unlike ln(x)). So it satisfies all the constraints and 
embodies several useful properties. 

• It also behaves very much like reciprocity failure in  hypersensitized emulsion. 
The DDP stretch is very similar to the arcsinh stretch, as was first noticed long 
before the invention of DDP by fitting functions to the response of “analog” 
developed emulsion: Bunsen & Roscoe 1862, Schwarzschild 1899, Kron 1913. 

• Not sure I’d put DDP into my image-processing software if I knew that…
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Demonstration of stretching
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Linear                                                                   DDP



Demonstration of stretching
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arcsinh DDP


	Lesson 3: finding and seeing structure in images
	Sharpening images: deconvolution
	Deconvolution (continued)
	Deconvolution (continued)
	Deconvolution (continued)
	Diversion: how CLEAN works
	CLEAN (continued)
	CLEAN (continued)
	CLEAN (continued)
	CLEAN (continued)
	Deconvolution (continued)
	Deconvolution (continued)
	Deconvolution (continued)
	NGC 891
	NGC 891, MEM deconvolved
	Stretching images
	Stretching images (continued)
	Stretching images (continued)
	Demonstration of stretching
	Demonstration of stretching

