Spectral line imaging

References:

The <u>AST 203</u> notes

D.E. Osterbrock & G.J. Ferland 2006, *Astrophysics of gaseous nebulae and active galactic nuclei*, chapters 1-4.

The <u>CHIANTI</u> atomic database

D.S. Goldman 2013, *Narrowband imaging*. In *Lessons from the masters,* ed. R. Gendler (New York: Springer), pp. 115-130.

Lesson 5

Astronomy 244/444, Spring 2020

M 27, LRHαGB, from Mees.

Spectral line imaging at visible and infrared wavelengths

All spectroscopy involves the use of interference to distinguish one wavelength from another.

- The larger the phase difference between signals – or path-length difference, in most of our applications – the more finely wavelengths can be discriminated.
- **Spectral resolution** $\Delta \lambda / \lambda$ at wavelength λ is characterized by the instrument's bandwidth $\Delta \lambda$ for a truly monochromatic signal.
 - Two signals at wavelengths separated by $\geq \Delta \lambda$ are **resolved**; otherwise they're **unresolved**.

Interference filters

This semester we use multilayer dielectric interference filters, in front of the CCD, to make spectral line images.

- See <u>the AST 203 notes</u> to learn how these are designed and built.
- Upside: compact, extremely uniform in transmission and bandwidth.
- Downside: non-adjustable; hard to get high enough spectral resolution to isolate single lines; not the ultimate in sensitivity.
- In some wavelength ranges one has to have extra filters set for an off-line wavelength, to subtract continuum emission.

Spectrographs

More sophisticated and more wavelength-selective instruments:

Number of spectral resolution elements covered

Spectrographs (continued)

Use of detector arrays with such instruments:

Scanning Fabry-Pérot interferometer

Best for high-resolution imaging of single lines or line profiles.

- High-reflectivity (r), lowabsorption, parallel mirrors whose (wide) optical separation *nd* can be controlled and scanned precisely.
 - Adjust *d*: piezoelectric scanning
 - Adjust *n: p*ressure scanning

Each pixel sees λ at resolution $\Delta \lambda / \lambda$, where $\frac{2\pi dn \cos \theta_t}{\lambda} = \pi m$ (m = 0, 1, 2, ...), $\frac{\Delta \lambda}{\lambda} = \frac{1}{mQ}$, and $Q = \frac{\pi r}{1 - r^2}$.

Scanning Fabry-Pérot interferometer (continued)

□ Usually a sequence of 2-3 FPIs must be used, to isolate a single large-*m* order of the scanning one.

Long-slit grating spectrograph

Best for point sources, or objects in which only one spatial dimension is important.

- Detector array sees a long wavelength span at pixel along a 1-D strip of the sky.
- Spectrograph's entrance slit usually 2-10 pixels wide, adjustable for seeing at the cost of spectral resolution.
- Can only make spectral images by stepping the telescope in the direction perpendicular to the entrance slit, hopefully by a fraction of the slit width per step. (Doesn't work great.)

$$\begin{split} a(\sin\theta_m - \sin\theta_i) &= m\lambda \quad , \quad m = \dots - 2, -1, 0, 1, 2, \dots \quad , \text{ and} \\ \frac{\Delta\lambda}{\lambda} &\geq \frac{1}{mN} \quad , \end{split}$$

and where N is the number of grating rulings illuminated.

Integral field spectrograph (continued)

Best for full spectra of each pixel in a relatively small neighborhood around a compact object.

- Optically slice up the 2-d field, and image each slice along a different segment of the slit of a grating spectrograph.
- Then reconstruct the data cube after detection.
- Invented by Ira Bowen in the 1930s, before CCDs or computers.

Integral field spectrograph (continued)

- □ Current implementations feature
 - lenslet arrays, relaying the image to an
 - optical fiber bundle, used to
 - rearrange the image along the spectrograph slit, whence
 - it is detected in long-slit mode, and
 - reconstructed via computer.
- □ No light lost at slit due to seeing variation, tracking errors, *etc*. Thus it's great for precision wideband spectra of point sources (i.e. exoplanets).

Imaging Michelson interferometer

Ideally, the best of all: full field imaging, and high-resolution spectra in every pixel.

- Input light is divided with a beamsplitter.
- □ Half the light is reflected from a stationary mirror...
- the other half from a mirror that can move.
- The light joins up again at the beamsplitter, but half of it has an extra path-length difference from the other half.
- □ This light is focused on the detector array.

Detector focal plane

Imaging Michelson interferometer (continued)

- ❑ The movable mirror is scanned repeatedly over a fixed range.
- Array signal (each pixel) is recorded during the scan, such that the range is sampled finely.
- Average these scan recordings and Fourier-transform the result, and one gets a complete spectrum at every pixel.
 - Wavelength coverage is determined by the sampling rate.
 - Resolution is determined by maximum path-length difference:

$$\frac{\Delta\lambda}{\lambda} = \frac{\lambda}{4d}$$

Detector focal plane

(J. Graham)

Imaging Michelson interferometer (continued)

Down sides:

Much more complicated than other options; many more challenging highprecision control systems are necessary.

□ Thus, expensive.

- Vulnerable to additional sources of noise and systematic error.
- □ So there aren't many around, yet. One such is SITELLE at the 4-meter Canada-France-Hawaii telescope, which covers the whole visible band (in six chunks) and achieves $\Delta\lambda/\lambda \sim 10^{-4}$ in a 2048×2048 pixel, 11-arcmin square field.

Le <u>Spectromètre Imageur à Transformée</u> <u>de Fourier pour l'Étude en Long et en</u> <u>Large des raies d'Émission</u>.

Spectral lines of atoms and ions at visible wavelengths

In this class we will be concerned with electronic transitions of atoms and ions. They comprise the visible emission from H II regions, planetary nebulae, supernova remnants, and HH objects.

□ Recombination lines of hydrogen (H I)

- Electric dipole transitions, after recombination in a high-*n* state.
- Forbidden lines of other elements, like O, O⁺, O⁺⁺ or S⁺...
 - ...whose forbidden-line spectra are referred to as [O I], [O II], [O III] and [S II], respectively.

z	Name	Ionization potential (eV)				
		0	+	++	+++	++++
1	H	13.6				
2	He	24.6	54.4			
3	Li	5.4	75.6	122.5		
4	Be	9.3	18.2	153.9	217.7	
5	В	8.3	25.2	37.9	259.4	340.2
6	С	11.3	24.4	47.9	64.5	392.1
7	Ν	14.5	29.6	47.4	77.5	97.9
8	0	13.6	35.1	54.9	77.4	113.9
9	F	17.4	35.0	62.7	87.1	114.2
10	Ne	21.6	41.0	63.5	97.1	126.2
11	Na	5.1	47.3	71.6	98.9	138.4
12	Mg	7.6	15.0	80.1	109.3	141.3
13	Al	6.0	18.8	28.4	120.0	153.8
14	Si	8.2	16.3	33.5	45.1	166.8
15	Р	10.5	19.8	30.2	51.4	65.0
16	S	10.4	23.3	34.8	47.2	72.6
17	CI	13.0	23.8	39.6	53.5	67.8
18	Ar	15.8	27.6	40.7	59.8	75.0
19	K	4.3	31.6	45.8	60.9	82.7
20	Ca	6.1	11.9	50.9	67.3	84.5
21	Sc	6.6	12.8	24.8	73.5	91.7
22	Ti	6.8	13.6	27.5	43.3	99.3
23	V	6.7	14.7	29.3	46.7	65.3
24	Cr	6.8	16.5	31.0	49.2	69.5
25	Mn	7.4	15.6	33.7	51.2	72.4
26	Fe	7.9	16.2	30.7	54.8	75.0
27	Со	7.9	17.1	33.5	51.3	79.5
28	Ni	7.6	18.2	35.2	54.9	76.1

The ions on our menu

Step 1 of analysis, short form

The main point of the H II region and HH object projects is to make images of the abundance ratios $\chi_{O++} = n(O^{++})/n(H)$ and $\chi_{S+} = n(S^{+})/n(H)$.

- □ Answers will be very different for the two classes of objects, which you should seek to explain.
- □ The intensity of an optically-thin *j* to *i* hydrogen recombination line is given, apart from extinction, by

$$I_{ji} = \frac{hc}{4\pi\lambda_{ji}} \alpha_{ji} \int n_e n_p ds \quad ,$$

where I_{ji} is the intensity in erg sec⁻¹ cm⁻² ster⁻¹ (which you measure); λ_{ji} is the wavelength;

 $\alpha_{ji}(T)$ is the effective recombination coefficient, in cm³ sec⁻¹, calculated quantum-mechanically;

 n_e , n_p are number per unit volume of electrons and protons; and the integral is over distance *s* along the line of sight through the nebula.

D Our recombination line, H α (*j* = 3, *i* = 2), can safely be taken to be optically thin.

□ The [O III] and [S II] lines are not recombination lines; they are collisionally excited.

- Meaning that electrons collide with these ions in their ground state, and leave them in the upper state of the line...
- whereupon the ion radiates a photon, or collides with another electron, to get back to the ground state.
- We see the photons that are radiated. The optically-thin intensity of the *j* to *i* transition is

$$I_{ji} = \frac{hc}{4\pi\lambda_{ji}} A_{ji} \int n_j ds = \frac{hc}{4\pi\lambda_{ji}} A_{ji} \int f_j \chi n_p ds$$

□ These lines can be taken to be optically thin as well.

Here

- A_{ii} is the spontaneous radiation rate (Einstein A coefficient) in sec⁻¹;
- n_j is the number density of the ion in state *j*;
- f_j is the fraction of the ion's population in state *j*;
- χ is the ratio of the ion's number density to that of hydrogen;

other terms are as before, and again the integral is over distance *s* along the line of sight through the nebula.

- □ We know none of the properties of the nebula *a priori*. Well, almost none: we know that hydrogen densities more than about $n_p = 10000 \text{ cm}^{-3}$ are very rare outside of neutral molecular clouds.
- □ This should be compared to the **critical density** of each forbidden line: the density at which the rates of radiative and collisional decay of the upper state are equal.

□ If the actual density is much smaller than the critical density, the fraction of the ions in the upper state is given by

$$f_j = \frac{n_e \gamma_{ij}}{A_{ji}}$$

where $\gamma_{ij}(T)$ is the collisional excitation rate coefficient in cm³ sec⁻¹ of state *j*. γ_{ij} is also calculated quantum-mechanically.

□ This is generally a good approximation for visible forbidden lines. In which case the intensity ratio of a forbidden line and a hydrogen recombination line determines the relative abundance χ : for example, if χ is uniform along the line of sight,

$$\begin{split} I_{\mathrm{H}\alpha} &= \frac{hc}{4\pi\lambda_{\mathrm{H}\alpha}} \alpha_{\mathrm{H}\alpha} \int n_e n_p ds \quad , \quad I_{\mathrm{[O III]}} = \frac{hc}{4\pi\lambda_{\mathrm{[O III]}}} A_{ji} \int \frac{n_e \gamma_{\mathrm{[O III]}}}{A_{ji}} \chi_{\mathrm{O}^{++}} n_p ds \quad ; \\ \Rightarrow \chi_{\mathrm{O}^{++}} &= \frac{\lambda_{\mathrm{[O III]}}}{\lambda_{\mathrm{H}\alpha}} \frac{\alpha_{\mathrm{H}\alpha}}{\gamma_{\mathrm{[O III]}}} \frac{I_{\mathrm{[O III]}}}{I_{\mathrm{H}\alpha}} \quad . \qquad \text{The integral cancelled out.} \end{split}$$

- □ The only other nuance is that our [S II] filter includes two [S II] lines of similar strength that we can't resolve.
- □ But this just adds one more term proportional to the S⁺ abundance:

$$\begin{split} I_{\mathrm{H}\alpha} &= \frac{hc}{4\pi\lambda_{\mathrm{H}\alpha}} \alpha_{\mathrm{H}\alpha} \int n_e n_p ds \quad , \\ I_{\mathrm{[S II]}} &= \frac{hc}{4\pi\lambda_{\mathrm{[S II]1}}} \int n_e \gamma_{\mathrm{[S II]1}} \chi_{\mathrm{S}^+} n_p ds + \frac{hc}{4\pi\lambda_{\mathrm{[S II]2}}} \int n_e \gamma_{\mathrm{[S II]2}} \chi_{\mathrm{S}^+} n_p ds \\ &= \left(\frac{\gamma_{\mathrm{[S II]1}}}{\lambda_{\mathrm{[S II]1}}} + \frac{\gamma_{\mathrm{[S II]2}}}{\lambda_{\mathrm{[S II]2}}}\right) \frac{hc}{4\pi} \chi_{\mathrm{S}^+} \int n_e n_p ds \quad ; \\ \chi_{\mathrm{S}^+} &= \left(\frac{\gamma_{\mathrm{[S II]1}}}{\lambda_{\mathrm{[S II]1}}} + \frac{\gamma_{\mathrm{[S II]2}}}{\lambda_{\mathrm{[S II]2}}}\right)^{-1} \frac{\alpha_{\mathrm{H}\alpha}}{\lambda_{\mathrm{H}\alpha}} \frac{I_{\mathrm{[S II]}}}{I_{\mathrm{H}\alpha}} \quad . \end{split}$$

The numbers you need are

$$\gamma_{[\text{S II}]1} = 6.514 \times 10^{-9} \text{ cm}^3 \text{ sec}^{-1} \qquad \gamma_{[\text{O III}]} = 1.133 \times 10^{-9} \text{ cm}^3 \text{ sec}^{-1}$$

$$\gamma_{[\text{S II}]2} = 9.702 \times 10^{-9} \text{ cm}^3 \text{ sec}^{-1} \qquad \alpha_{\text{H}\alpha} = 8.643 \times 10^{-14} \text{ cm}^3 \text{ sec}^{-1}$$

- □ Relative abundance in typical H II regions: $\chi_{O} = (3.3 \pm 0.5) \times 10^{-4}$, $\chi_{S} = (1.0 \pm 0.1) \times 10^{-5}$ (McCleod et al. 2016).
- Details: all the recombination coefficients, collision strengths, and A coefficients can be found on line in the CHIANTI atomic database:

https://www.chiantidatabase.org/chianti.html (choose the Direct Access link)

and references therein.

□ The CHIANTI data-file column headers are given by <u>Del Zanna et al. 2015</u>, appendices A1-A2. (Often easier to get the data from the original references.)