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Beyond magnetoquasistatics

In PHY 217, we came up with the basic equations for 
electrodynamics, namely Gauss’s law, the “no magnetic 
monopoles” law, Faraday’s law and Ampère’s law:
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Beyond magnetoquasistatics (continued)

As has no doubt been mentioned to you, these equations are, 
strictly speaking, false. Why? Because we know that the 
divergence of a curl has to be zero, yet from these equations,

Thus these equations are only an approximation, good only 
when the rate of change of charge density is small enough. 
We call this approximation magnetoquasistatics. 

( ) ( )

( )

1 0  always 0 ,  but

4 4 continuity: 0

0 only if 0.

c t

c c t t

t

π π ρ ρ

ρ

∂
⋅ × = − ⋅ = ⋅ =

∂
∂ ∂⎛ ⎞⋅ × = ⋅ = − + ⋅ =⎜ ⎟∂ ∂⎝ ⎠

∂
= =

∂

E B B

B J J

— — — —

— — — —



14 January 2004 Physics 218, Spring 2004 4

Beyond magnetoquasistatics (continued)

The problem, of course, is Ampère’s law. We derived this law 
from the Biot-Savart law, using along the way the 
magnetostatic condition                  

Here, I’ll remind you how it went; please consult your notes 
from PHY 217, or view

http://www.pas.rochester.edu/~dmw/phy217/Lectures/Lect_27b.pdf

for the context of the derivation.

0.⋅ =J—
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Flashback: Derivation of Ampère’s Law

Any vector field is uniquely specified by its divergence and 
curl. What are the divergence and curl of B? 
Consider a volume V to contain current I, current density

Denote gradient with respect to
the components of r and r’ by

Now note that
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Flashback (continued)

With these,

This is a useful form for B, which we will use a lot next 
lecture too (the integral turns out to be the magnetic vector 
potential, A). Take its divergence:
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Flashback (continued)

Integrate this last expression over any volume:

Compare these to the expressions for E in electrostatics, and 
we see that magnetostatics involves no counterpart of charge: 
there’s no “magnetic charge.”
Now for the curl:

Use Product Rule #10:
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Flashback (continued)
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Flashback (continued)

Also,

so

Use Product Rule #5 again, on the first term:
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Here’s where 
we assumed 
statics:
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Flashback (continued)

So,

But by definition J = 0 on the surface, so the integral vanishes:
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Beyond magnetoquasistatics (continued)

We could go back and fix this: 
substitute
do another integration by parts,
arguing that two more surface integrals vanish, and
substitute

and we’d naturally get a more general form of Ampère’s law 
that is valid for any time variation in the charge density. 
I encourage you to do this, by way of review; here, let’s just 
take a shortcut to the answer, and demonstrate that it works:
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Beyond magnetoquasistatics (continued)

Does this work? Yes, because

so

must therefore be the correct generalization of Ampère’s law 
for time-variable charge and current densities.
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Use Gauss’s law…

Use continutity…
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Displacement current

Maxwell was, of course, the first to get this result. He didn’t 
do it this way, though; he put in the extra term because it was 
the only way to get a wave equation by combining the four 
differential equations of electrodynamics, that resembled the 
equations for elastic waves in matter. He noted afterward 
that it fixed the div-curl-B problem. Maxwell thought of this 
extra term as related to a source he called the displacement 
current density. 
The role of this term as a current density is made clearer in 
integral form, and applied to the simple example of a 
parallel-plate capacitor charging up:
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Displacement current (continued)

Consider the capacitor plates to be closely spaced, even 
though they’re not drawn that way, and consider two 
surfaces S1 and S2, both bounded by circle C, with S2
ballooning to enclose the nearer plate.

1S

( )2  enclosing capacitor plateS

A
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+

w

C

I
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Displacement current (continued)

Integrate the new “corrected” form of Ampère’s law over 
either of these surfaces:

Considering the circle C to be an Ampèrean loop, we could use 
this to calculate B. Most would use S = S1 for the area integral, 
and note that the enclosed current is just the current I in the 
wire. But the enclosed current for S = S2 is zero, so that term 
must vanish. All S2 intercepts is electric field, E = V/w:
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Displacement current (continued)

Since the electric field is constant between the plates and very
small outside them,

just like the other surface; so                          no matter which 
surface is used. 
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Displacement current (continued)

If we therefore define the displacement current density as

then there is a “displacement current” between the capacitor 
plates that is exactly equal to I, and there is a more general 
“current” that is continuous throughout the circuit. 
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The Maxwell equations

So here are the Maxwell equations, in vacuum, in final form:
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Magnetic monopoles

The only remaining sense in which these equations may still 
be approximate is if magnetic charges (monopoles) exist. We 
will see a powerful argument for searching for magnetic 
monopoles in the first homework set (Griffiths problem 8.12); 
they would also symmetrize the Maxwell equations. Note 
that if there are no electric charges or currents, the Maxwell 
equations are symmetrical:
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Magnetic monopoles (continued)

If, on the other hand, there were magnetic as well as electric 
monopoles, with magnetic charge density η and magnetic 
current density K, then we’d have

where, if both electric and magnetic charge were conserved,
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