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Today in Physics 218: Fresnel’s equations 

Transmission and 
reflection with E
parallel to the 
incidence plane
The Fresnel equations
Total internal 
reflection
Polarization on 
reflection
Interference
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Last time: E perpendicular to the incidence plane

…for which we obtained 

for the transmitted and reflected amplitudes of E, where

Now, to complete the picture, we need to consider incident 
light with E polarized in the plane of incidence.
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E parallel to the incidence plane
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Again we will use the boundary conditions on

This time it’s the       boundary condition that tell us nothing
besides 0 = 0, and the
boundary condition that turns
out to be identical to the
boundary condition.    

E parallel to the incidence plane (continued)

Iθ

Iθ Ik

0 sinI IE θ−

0 cosI IE θ

 and :E H

( )
0 0 0

1 1 0 1 1 0 2 2 0
1 2

cos cos cos ,
1 1 .

I I R I T T

I R T

E E E

E E E

θ θ θ

µ ε µ ε µ ε
µ µ

+ =

− =

⊥B
⊥D

E



6 February 2004 Physics 218, Spring 2004 5

E parallel to the incidence plane (continued)

Now divide the first of these equations by              and divide 
the other one by

where, again, 

It’s a simple matter to solve these equations for the reflected 
and transmitted field amplitudes; in fact it’s the same as we 
already did three times. The result is:
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E parallel to the incidence plane (continued)

All of these results comprise the Fresnel equations:
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Normal incidence

We shall now turn to some interesting and useful 
implications of Fresnel’s equations, and other relations that 
can be obtained in the same manner.

Normal incidence. Both pairs of Fresnel equations reduce 
to the same expression we derived before for incidence 
angle zero 

as they must if they’re correct.

( )cos cos 1 :T Iα θ θ= =

0
0 0 0

2 1and ,
1 1

I
T R I

EE E Eβ
β β

−
= =

+ +



6 February 2004 Physics 218, Spring 2004 8

Total reflection

Suppose                                                         given by

the transmitted wave is parallel to the interface, and for 
values of
What does this mean? In this condition,   
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Total reflection (continued)

Now the      is real, but the projection of the wavevector is 
imaginary:

The transmitted wave amplitude decreases exponentially 
with increasing z (exponential attenuation): no energy is 
transmitted to large distances, all energy is reflected, at 
incidence angles greater than 
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Total reflection (continued)

For example: flint glass                   in air               has 

At                 light is totally reflected. This is how light fibers 
work. 
(Now you know how much a light fiber can be bent before it 
stops working.) 
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Polarization on reflection

If        is parallel to the plane of incidence, then

that is, all light polarized in the plane of incidence must be 
transmitted (none reflected) if this is true. The incidence 
angle that corresponds to this is obtained from:
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Polarization on reflection (continued)

Typically,

But,

Compare these last two results:
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Polarization on reflection (continued)

Note also that for

Thus                         for light 
incident at Brewster’s angle; the
transmitted light travels perpendi-
cular to the direction of reflection. 
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Polarization on reflection (continued)
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Interference

You will show, in problem set #3, that the intensity 
transmitted by a plane parallel slab of dielectric material with
refractive index n and thickness d, at normal incidence, is

where k is the wavenumber in 
vacuum. 
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Interference (continued)

Look at this formula carefully and you’ll see that T = 1 (100% 
transmission) for certain values of k,

because the sine term vanishes 
there. The peaks get sharper 
with increasing refractive 
index n. What is the origin 
of the peaks?
(Interference, obviously, but
how?)
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Interference (continued)

One can think of the 
transmission as the result of a 
large number of internal 
reflections and transmissions. 
At normal incidence, all of 
the transmitted waves would 
be in phase (and interfere 
constructively) if an integer 
number of  wavelengths was 
covered for each two internal 
reflections:

22 , 0,1, 2,...d m m nkd m m
n nk
λ π π= = ⇒ = = Just like the

formula!



6 February 2004 Physics 218, Spring 2004 18

Interference (continued)

This, too, can be solved as a boundary-value problem, by 
considering the boundary conditions at both surfaces, and 
supposing there are transmitted and reflected waves 
propagating inside the slab, as well as the incident and 
reflected waves on the incidence side, and just a 
transmitted wave on the far side.
The boundary conditions give us a system of four 
equations in four unknowns, in this case.
It can certainly be done this way, and we’ll see an 
example. I’ll also introduce a much handier way, that can 
be used easily to find transmission and reflection through 
an arbitrary number of dielectric slabs and surfaces. 


