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Interference in layers of linear media

As a preamble to the general question of transmission and 
reflection by stratified media, we will ask a simpler one: what 
is the condition for completely constructive interference in a 
single layer of linear material?

Consider two plane-parallel, partially reflecting surfaces 
separated by a linear medium with refractive index 

and thickness d (next slide).
It doesn’t matter what the index of refraction outside the 
reflectors is, but we will assume here that it is unity 
(vacuum) on both sides. 
If the transmitted or reflected rays are focussed then the 
waves interfere. By calculating the path-length 
differences, we can find out how they interfere.
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Interference in layers of linear media (continued)
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Interference in layers of linear media (continued)

The path length difference between any two successive 
transmitted waves is the same. For the first set, that’s the 
length between AB and ACD:

The wavelength is λ in vacuum and λ/n in the medium 
between the reflectors, so 
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Interference in layers of linear media (continued)

If the phase difference is an integer multiple of 2π, then 
the interference between the two wavefronts
corresponding to these paths is completely constructive:

Thus there are maxima in the spectrum of the 
transmission of the dielectric slab, at wavelengths given 
by

This, BTW, is the principle of the Fabry-Perot interferometer.  
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Transmission and reflection in stratified linear 
media, viewed as a boundary-value problem

Now we will set up the general solution to the problem of the 
transmission and reflection by a plane parallel layer, and find 
thereby a method for dealing with as many layers as we 
want. 
Consider light propagating in one medium, incident 
obliquely on a layer of a second medium, and emerging into 
a third (next slide). What are the amplitudes of the 
transmitted and reflected waves?

As before, this can be broken into two parts, one with 
light polarized perpendicular to the plane of incidence 
(TE), and one with E parallel to the plane of incidence 
(TM). We’ll do TE first, and fill out the boundary 
conditions at the surfaces.
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Transmission and reflection in stratified linear 
media as a boundary-value problem (continued)

TE waves
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Transmission and reflection in stratified linear 
media as a boundary-value problem (continued)

The electric fields look generically like this:

And of course
At surface 1, the boundary conditions on 
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Transmission and reflection in stratified linear 
media as a boundary-value problem (continued)

or

Next the wave traverses the layer filled with medium #1, 
as follows:
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Transmission and reflection in stratified linear 
media as a boundary-value problem (continued)

As a wave crosses the slab it travels a distance 

Compared to the undisplaced wave that would have 
resulted if the slab were not there, it undergoes a phase 
change of

(half that of the two reflections in slide 5)
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Transmission and reflection in stratified linear 
media as a boundary-value problem (continued)

Thus the                    boundary conditions at surface 2 are

At this point we have four equations that we can solve for 
the four unknown amplitudes,
for the TE case. You can proceed directly in this manner, 
to solve a couple of the problems in this week’s 
homework (e.g. Crawford 5.21, Griffiths !9.34). But it 
would be incredibly tedious to treat more than one layer 
like this. Fortunately there’s a better way…
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Matrix formulation of the fields at the interfaces

The clever way to solve these problems starts by 
rearranging the boundary conditions to obtain relations 
between the fields at the two interfaces.
appear in both sets of boundary conditions, so solve the 
latest result for these two amplitudes: 
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Matrix formulation of the fields at the interfaces 
(continued)

Put this back in the surface-2 boundary conditions, and 
solve for

Now put both of these into the surface-1 boundary 
conditions:
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Matrix formulation of the fields at the interfaces 
(continued)
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Matrix formulation of the fields at the interfaces 
(continued)

Now define

and the results look suggestive of matrix arithmetic:

is called the characteristic matrix of layer 1.
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Matrix formulation of the fields at the interfaces 
(continued)

We could repeat this procedure for TM waves (see 
following slide), but it’s so similar to what we just did that 
we’ll just skip to the result:

Thus if we define

we get the same matrix equation as before, which we will 
write as:
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Matrix formulation of the fields at the interfaces 
(continued)
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Matrix formulation of the fields at the interfaces 
(continued)

If there were yet a third surface to the right, the parallel 
components of the fields there could therefore be 
determined from 

which can be combined with our first result to yield
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Matrix formulation of the fields at the interfaces 
(continued)

And so on. Evidently, for a stack of p layers, the parallel 
components of the fields at the first and p+1th surface are 
related by

and the whole stack can be  said to have a characteristic 
matrix M given by 
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