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Today in Physics 218: guided waves

Metallic waveguides
Light propagation in 
hollow conductive 
waveguides
The TE modes of 
rectangular metal 
waveguides

X-band (ν = 7-12 GHz) horn, 
reduced-height waveguide and 
magnetron (Malcom Strandberg, MIT; 
Fritz Goro, Life Magazine photo.)
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Metallic waveguides

Soon after powerful sources of coherent high-frequency radio 
and microwave radiation were invented, in the decade before 
World War II, it became common for experimenters and 
engineers to use waveguides to “pipe” the radiation around, 
instead of using free-space propagation, lenses and mirrors.

It might seem obvious that this could 
work well: the light is confined by the 
metal pipe, and propagates at high 
efficiency via high-incidence 
reflections.
Convenient, too: standard components 
were manufactured, that fit together 
like plumbing fixtures. 
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Metallic waveguides (continued)

Malcom Strandberg (MIT) demonstrates collection and 
transmission through serpentine waveguide of microwave 
power large enough to light up the neon bulb he’s holding. 
(Fritz Goro, Life Magazine photo, 1945.)
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Metallic waveguides (continued)

That’s not all there is to it, though; the waveguides are 
comparable to or smaller than the wavelength of the light 
propagating through them, and restrict the light’s 
properties in ways different from free space. 
The War brought an explosion in the development of 
microwave engineering for radar applications. virtually 
all the top American physicists not already involved in the 
Manhattan Project – notably at the MIT Radiation 
Laboratory – worked feverishly to invent a wide variety 
of waveguide-based devices, generating improved radars, 
postwar industrial applications, and many frightfully 
elegant E&M problems. (See Jackson, chapter 8.) 
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Light propagation in hollow conductive 
waveguides

We want first to deal with the question, how do 
monochromatic plane waves propagate in metal pipes? 
Let us suppose that waves of the form 

will propagate, where in general 

In choosing this form we anticipate that the confinement may 
prevent constant-amplitude wavefronts, and may not involve 
transverse waves.  Let us now apply Maxwell’s equations, for 
the vacuum within the pipe, to the fields (Problem !9.26a):
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Light propagation in hollow conductive 
waveguides (continued)

Faraday’s law gives:

and similarly Ampère’s law gives
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Light propagation in hollow conductive 
waveguides (continued)

Now, it turns out to be possible to solve this system of (six!) 
equations for the x and y components of E and B in terms of 
their z components. For instance, consider the y component of 
Faraday’s law and the x component of Ampère’s law:

Multiply the first one by k, the second by ω/c, and subtract:
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Light propagation in hollow conductive 
waveguides (continued)

or even

I’ll spare you the tedium of the other three steps and cut to 
the answers:
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Light propagation in hollow conductive 
waveguides (continued)

and

Note that if the waves are transverse                           as 
they are in free space, then they are particularly boring: all 
of the x and y components of the field amplitudes are zero 
too, and there is no wave. 

It also turns out that if these four results of the Faraday and 
Ampère laws are inserted into the other two Maxwell 
equations, the result will be uncoupled equations for Ez and 
Bz. To wit (problem !9.26b):
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Light propagation in hollow conductive 
waveguides (continued)
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Light propagation in hollow conductive 
waveguides (continued)

Of course, there are still boundary conditions to apply. In 
order to solve these second-order differential equations, we 
need two boundary conditions, chosen from the usual 
suspects:

which in the case of perfectly conducting walls (for which E = 
0 and B = 0 inside the conductor) and vacuum inside become
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Light propagation in hollow conductive 
waveguides (continued)

We can use any two. Clearly the two that will be the simplest 
to use are the ones without source terms:

,1 ,10 , 0 .B⊥= =E
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TE modes of rectangular metal waveguides

Thus there are two special cases to consider:

As we’ve seen, there are no TEM waves in the hollow 
conductive waveguide. The wave solutions to the Maxwell 
equations in hollow waveguides have nonzero longitudinal 
components to E or B or both.

Let’s pursue one of these, and derive the wave solution in 
a concrete example: TE waves in a rectangular waveguide, 
with dimensions a and b.
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TE modes of rectangular metal waveguides 
(continued)

Considering our previous work, all we have to do is solve 
for        Let’s try it with separation of variables.  0 .zB

x

y

z

b

a

Take a > b.
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TE modes of rectangular metal waveguides 
(continued)

To solve:

Set
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TE modes of rectangular metal waveguides 
(continued)

The general solution for the x part is, of course,

The boundary conditions requires that      vanish at x = 0 
and a. Now, our function X is part of                       But a 
few minutes ago we proved that 

so we apply 
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TE modes of rectangular metal waveguides 
(continued)

Thus,

Similarly, for the y part of         we get 
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So the solution is

and all the rest of the components of E and B can be 
worked out from the expressions derived earlier (pages 7-
9),
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TE modes of rectangular metal waveguides 
(continued)
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TE modes of rectangular metal waveguides 
(continued)

and

One more nuance of the solution needs to be mentioned: it 
turns out that the m,n = 0,0 mode cannot occur (Problem 
9.27). This mode would actually be a TEM mode (that is, it 
would have             as well as              ), which as we have 
already noted cannot propagate in hollow conducting 
waveguides. 
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