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Today in Physics 218: more on waveguides and 
other transmission lines

Waveguide modes
Dispersion and cut-off 
in waveguides
Massive photons?
The real reason there 
are no TEM modes in 
hollow conducting 
waveguides
TEM modes in coaxial 
waveguides

Intensity of the TE32 mode in 
rectangular waveguides. Red is 
the highest intensity, darker 
blues approach zero, and the 
other rainbow colors represent 
intermediate intensity values.
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Waveguide modes: intensity in rectangular 
waveguides

Let’s calculate the intensity within the waveguide for the TE 
mode we worked out last time.
The time-averaged Poynting vector,

Last time we showed that 
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Waveguide modes: intensity in rectangular 
waveguides (continued)

Inserting these, and cancelling common factors, we get

We also discovered last time that
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Waveguide modes: intensity in rectangular 
waveguides (continued)

so
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Waveguide modes: intensity in rectangular 
waveguides (continued)

These are grayscale plots of the z component of S: white is the 
highest intensity, black is zero intensity, gray is in between. 
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Waveguide modes: intensity in rectangular 
waveguides (continued)

As before: grayscale plots of the z component of S: white is 
the highest intensity, black is zero intensity, gray is in 
between. 
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Dispersion and cut-off in waveguides

Clearly, waveguides are dispersive, as indicated by the 
frequency dependence of the amplitudes of the wave 
solutions, and of the intensity. 

The wavenumber of the TE solutions comes from the 
condition we obtained during our separation solution:
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Dispersion and cut-off in waveguides (continued)

Note that if

the wavenumber k is purely imaginary, and the wave 
attenuates exponentially on its way down the waveguide. 
Thus there is a cutoff frequency for each propagating 
mode,         below which the waveguide does not transmit 
power, and 
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Aside: massive photons

We found for both plasmas and waveguides that there is a 
lower frequency bound for propagating light, and thus that 
the relation between wavenumber and frequency is

or

We also know (problem 9.22b) that k is related to momentum 
and ω to energy, so we can compare this result to the well-
known formula from relativistic mechanics,
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Aside: massive photons

Thus the cutoff frequency of plasmas and waveguides is 
analogous to rest mass in relativistic particle mechanics. 
This analogy can actually be thought of as the 
correspondence limit of the mechanics of photons in 
plasmas and waveguides: photons “really do” have mass, 
if they reside in plasmas or waveguides; the rest mass 
would be given by 

2
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Dispersion and cut-off in waveguides (continued)

We have seen before (in plasmas) that dispersion makes 
the group and phase velocities different. Same here:
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Boundary conditions and hollow conducting 
waveguides

Without even referring to the boundary conditions, we 
already showed that there are no TEM waves in hollow metal 
waveguides. Here’s how the mere fact that boundary 
conditions would be applied gave us this result implicitly. 

We started sought our wave solution for waveguides by 
hypothesizing plane-wave like fields with amplitudes

Thus if E has no longitudinal component, Gauss’s law 
says
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Boundary conditions and hollow conducting 
waveguides (continued)

Furthermore, if B has no longitudinal component, than 
Faraday’s law says

These last two results indicate that the amplitude of E,

has zero divergence and curl, and thus can be written as 
the gradient of a scalar potential,
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Boundary conditions and hollow conducting 
waveguides (continued)

Now, the vacuum inside the waveguide has no free 
charges or currents, so this scalar potential must satisfy 
the Laplace equation,                    One would find the 
potential by solving this equation subject to the boundary 
conditions imposed by the waveguide. 
But the waveguide is made of a good conductor, and is 
therefore an equipotential. So the only solution is a 
constant potential, and therefore no wave. Thus there 
cannot be TEM waves in hollow conductive pipes.
If, however, the waveguide is not completely hollow – for 
instance, if it has a conductor within that isn’t in contact 
with the walls (and can be at a different potential), then 
this objection vanishes. Such is the case for coax cable…
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TEM modes in coaxial waveguide

Consider a hollow cylindrical
conductor with another conducting
cylinder coaxial with it, as 
shown. With two disconnected
conductors present, there can be
nontrivial TEM wave solutions,
in which case putting a wave
solution into Faraday’s law gives: 

(compare lecture, 23 February 2004, page 6). Similarly, 
Ampère’s law gives
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TEM modes in coaxial waveguide (continued)

Thus we have:
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TEM modes in coaxial waveguide (continued)

Thus the amplitudes are simply the solutions to the 
axisymmetric electrostatic and magnetostatic problems! 
Just stick an               on, and we’ll have the correct wave 
solution.
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