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Today in Physics 218: charges, currents, and 
radiation 

Retarded potentials and 
retarded time
Retarded potentials and 
the Lorentz gauge
Retarded potentials and 
the inhomogeneous 
wave equation

Radiation by two oscillating 
charges. Animation by Akira 
Hirose, University of 
Saskatchewan.
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Retarded potentials

The electromagnetic waves we’ve been discussing have to 
originate somewhere. In the following we’ll see that 
electromagnetic radiation can be generated by
• time-variable charge and current distributions, and 
• accelerating individual charges.

As usual when dealing with charges and currents, it is 
most convenient to calculate potentials first, and then to 
obtain fields from the potentials, rather than to calculate 
the fields directly. 
Also as usual, we will do our calculations mostly by 
construction of a solution to the relevant differential 
equations, demonstration that it works, and reliance upon 
the uniqueness of solutions. 
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Retarded potentials (continued)

What are the relevant differential equations? As we first 
saw in lecture on 21 January, we get them from Gauss’s 
and Ampère’s laws:
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Retarded potentials (continued)

With the Lorentz gauge condition, these equations 
become

that is, inhomogeneous wave equations.
To construct a solution, first note that we have a lot of 
experience with the static case. For
the potentials obey Poisson equations:

and in PHY 217 we showed in gory detail that the 
solutions to these equations are:  
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Retarded potentials (continued)
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where V is the volume that 
contains the charges and 
currents. 
We’ve also seen this semester that
fields and energy propagate at speed c in vacuum, when 
they travel in the form of electromagnetic waves. 
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Retarded potentials (continued)

Here comes the guess:
Every infinitesimal element of charge or current is a 
different distance    away from us (located at r). Thus a 
change in the sources at time    and position     doesn’t 
lead to a change in the fields at r until the later time

In other words, the fields at r depend upon the condition 
of the sources at    at the earlier time                 So we’ll 
guess that 

These are called the retarded potentials.
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Retarded potentials (continued)

is called the retarded time for the positions r
and
Now we need to show that these potentials satisfy the 
Lorentz gauge condition, and are solutions to the 
inhomogeneous wave equation. 
For the former, we will need to fiddle with the divergence 
of J for a bit before we’re ready to move on to the 
divergence of A. Bear with me for a few slides…

rt t c= − r
′r .
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Retarded potentials and the Lorentz gauge

First, note that the product rule for derivatives means that

where

as usual. Recall also that because

as we showed and used frequently in PHY 217.  
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Retarded potentials and the Lorentz gauge 
(continued)

Thus

Now, there’s an implicit dependence of J on r through
just because                    So, using the chain 

rule, 
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Retarded potentials and the Lorentz gauge 
(continued)

Without this implicit dependence upon r,          would be 
zero, as it was in the static case. Recall that we used to use

in magnetostatic calculations (viz. the Flashback 
in the lecture notes for 14 January).
But J depends explicitly on     as well as implicitly through 
the retarded time    , so by the chain rule again,
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Retarded potentials and the Lorentz gauge 
(continued)

Note that the continuity equation,                             was 
used in the last step. 
Combine these last three results:

We can use this in the form of Awe’ve guessed, and 
verify obedience to the Lorentz gauge condition:
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Retarded potentials and the Lorentz gauge 
(continued)

The last term vanishes if we choose the surface S to 
enclose all of the charges and currents, because no current 
flows through that surface, by definition (so J = 0 there):
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The solutions to the inhomogeneous wave 
equations are retarded potentials

Now we are in a position to see whether the retarded 
potentials are solutions to the wave equations we derived 
from the Maxwell equations. 
Start by computing the Laplacian of V, and aim at 

showing that this is equal to                            First, 

we’ll need to fiddle with the gradient of V a bit:

depends implicitly on r, through                     so 
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The solutions to the inhomogeneous wave 
equations are retarded potentials (continued)

But, as we showed in PHY 217,

so
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