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Today in Physics 218: electric dipole radiation

Retarded potentials as 
solutions to the 
inhomogeneous wave 
equation
Example: retarded 
potentials for an 
oscillating electric 
dipole

Radiation by sinusoidally-
varying magnetic dipole. 
Animation by John Belcher, MIT.
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The solutions to the inhomogeneous wave 
equations are retarded potentials

Last time we began to compute the Laplacian of V, and 

thus to aim at showing that this is equal to                    

We got as far as

Now we have to take the divergence of this result:
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The solutions to the inhomogeneous wave 
equations are retarded potentials (continued)
Use the chain rule:

We already showed and used, last time, the fact that

so, using the chain rule again,
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Flashback: concerning                 .

except at the origin, where it’s undefined. On the other hand, 

This should remind you of the behaviour of the delta 
function:

Thus
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The solutions to the inhomogeneous wave 
equations are retarded potentials (continued)
Also, we proved in PHY 217 that

If we put these last four equations into the integral, we get

Finally, note that 
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The solutions to the inhomogeneous wave 
equations are retarded potentials (continued)
…and we have what we were looking for:

that is, the retarded potential

is a solution to the inhomogeneous wave equation.
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The solutions to the inhomogeneous wave 
equations are retarded potentials (continued)
This process can be replicated for each component of A
(and J) to show that the retarded vector potential is a 
solution to the inhomogenous wave equation, too. 
Griffiths refers also to an indirect proof that the retarded 
potentials are solutions the inhomogeneous wave 
equations. That’s the proof I learned as an undergraduate. 
It’s actually not very indirect, and since it was actually 
first done by Riemann (1858) even before Maxwell 
completed his equations (early to mid 1860s), and since it 
counts as the first demonstration that electromagnetic 
waves travel at the speed of light (Riemann claimed this 
“established the connection between electricity and 
optics”), it may be worth including here as a curiosity.
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Curiosity: Riemann’s proof

Subdivide V into two parts: a very small volume (V1) centered 
on r, and the rest (V2). The potential is the superposition of 
contributions from these two volumes:

where V is the electric potential, or c times any component of 
the vector potential, and ρ is the charge density, or the 
corresponding component of current density. If V1 is 
sufficiently small, retardation effects are small, so
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Curiosity: Riemann’s proof (continued)

which is the electrostatic solution, so

Consider the viewpoint of an infinitesimal volume element 
within V2,         The charge density appears spherically 
symmetrical in   , because    is linear in r. Thus 
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Curiosity: Riemann’s proof (continued)

Thus,

Now note one of our results from early this semester (lecture, 
26 January): any function of                     is a solution to the 
one-dimensional wave equation, with speed c. (!!) So,
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Curiosity: Riemann’s proof (continued)

And we can now let

an inhomogeneous wave equation, as advertised. 
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The solutions to the inhomogeneous wave 
equations are retarded potentials (continued)
The same reasoning as above actually applies also to the 
advanced potentials,

as might be expected, since – like most of the equations of 
physics – the equations of electrodynamics are time-
reversal invariant. So they are solutions to the 
inhomogeneous wave equation too. The advanced 
potentials lack physical significance, though, because they 
violate causality.
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Electric dipole radiation

The simplest example of a 
radiating system is perhaps 
the oscillating electric dipole. 

Consider a dipole 
consisting of two 
conducting spheres 
carrying charge                               
separated by a thin wire of 
length d, and arranged 
along the z axis as shown. 
What are the scalar and 
vector potentials at some 
distance  
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Electric dipole radiation (continued)

Solution:
The distance, and light propagation times, from the two 
charge to us (sitting at r), are different. By the law of 
cosines,

since
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Electric dipole radiation (continued)

With this formula we can write the electric potential as the 
sum of the retarded potentials of each charge:

The sinusoidally-varying factors can be simplified by 
using 
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Electric dipole radiation (continued)

At this point we need to specify more about the oscillation 
frequency or wavelength. Let’s suppose that the dipole is 
much smaller than any wavelength of interest, as well as 
being much smaller than our distance from it:

Then, to first order in the small-angle approximation,
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Electric dipole radiation (continued)

and the potential at our measurement point is
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