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HL Tau

XZ Tau A,B
Separation = 
0.27 arcsec
RGB = KHJ

23.3 arcsec
XZ Tau

Fields as sources of radiation: Huygens’s principle.
The Kirchhoff integral: “the far field is the Fourier 
transform of the near field.” 

Today in Physics 218: diffraction 

Diffraction-limited infrared images 
of young multiple stars in Taurus, 
using adaptive optics on the 
Palomar 200-inch telescope.

31 March 2004 Physics 218, Spring 2004 2

Fields as sources: Huygens’s principle

Sometimes one has a distribution of fields, instead of charges 
and currents, that can be considered the source of 
electromagnetic radiation propagating through space. In this 
case propagation delays need carefully to be accounted, as 
before, but instead of using retarded time and retarded 
length we will need just retarded length. 

And one building block: a spherical solution to the 
homogeneous wave equations for the fields. 
Consider one polarization component of an electric field 
E. Treat this component as a scalar. It obeys 
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Huygens’s principle (continued)

It turns out that the function

is an outward-propagating, spherical solution to the wave 
equation. The constant         called the source strength, is 
related to the electric field at the location we consider to 
be the “source” fields. (See also problem 9.33 in Griffiths.)
This is easily demonstrated: on the right-hand side of the 
wave equation we have
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Huygens’s principle (continued)

and on the left, 

We will treat the propagation of radiation from the 
“source” fields by considering each element of the field 
distribution to be a source of spherical waves, then adding 
up all the waves. This procedure is known as Huygens’s 
principle, and the result will be a scalar (actually, single-
polarization) account of diffraction.  
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Huygens’s principle (continued)

Consider a plane electromagnetic wave incident normally on 
a hole in an otherwise opaque screen. Some of the wave will 
pass through the hole and continue to propagate. What will 
be the electric field due to the light that got through, at some
point F a great distance away from the hole? 

The normal approach to this problem is to note that the 
hole can considered to have a constant electric field at 
some instant in time, and for each infinitesimal element of 
it to be an independent source of spherical waves of the 
form we just described:
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Huygens’s principle (continued)

Since we have only one polarization, we can integrate this 
expression over the aperture straightforwardly to obtain

. Each element of the aperture lies a different distance 
from point F, and the phase differences between the 
spherical waves arising from these pathlength differences 
will provide constructive or destructive interference. 
From the diagram,
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Huygens’s principle (continued)

Let’s suppose point F lies in the far field
then we can use a first-order approximation for

Thus
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Huygens’s principle (continued)

This leaves us with

or, with

We can define                    such that the aperture is built in: 

( )( - )
/

aperture

( , ) ,
i kr t

ik xx yy r
F A

eE x y e da
r

ω
′ ′− +′ ′ ′= ∫ E

/ , / ,x x y yk k kx r k k ky rθ θ= ≅ = ≅

( ) ( )( - )

aperture

, ( , ) x y
i kr t i k x k y

F x y A
eE k k x y e dx dy

r

ω ′ ′− +
′ ′ ′ ′= ∫∫ E

( , )A x y′ ′E

′ ′ ′ = ′ ′E EA Ax y x y, ,b g b g inside,  and
= 0  outside the aperture,



Physics 218, Spring 2004 31 March 2004

(c) University of Rochester 4

31 March 2004 Physics 218, Spring 2004 10

Huygens’s principle (continued)

so that

Apart from the leading factor, this looks like the two-
dimensional Fourier transform of the source strength per 
unit area, 
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Reminder: Fourier transforms

One dimensional Fourier transform and inverse transform:

For two dimensions:
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Reminder: Fourier transforms (continued)

With these definitions, it can be shown (and has been, in 
MTH 281) that f and F are related by 

a fact important in electrodynamics, as there are many ways 
to express energy conservation by its use. 

In the present case, the application of Rayleigh’s theorem 
and energy conservation will enable us to identify the 
hitherto mysterious source strength                    with more
familiar physical quantities.  
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The Kirchhoff integral

We can group the factors in our last result to make it look 
exactly like a Fourier transform:

and then apply Rayleigh’s theorem:
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The Kirchhoff integral (continued)

We can also change integration variables (back!) on the left 
side:

to obtain
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The Kirchhoff integral (continued)

The left-hand side is clearly the power in electromagnetic 
radiation passing through an x,y planar surface that runs 
through point F. 
By conservation of energy, the right-hand side must 
therefore be the power passing through the aperture. So 
we identify the source strength per unit area with the 
electric field in the plane of the aperture:  

so that
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The Kirchhoff integral (continued)

Thus, returning to our original result from Huygens’s 
principle, we can write

This is one of the fundamental relations of physical optics. Its
meaning: the far field,        and the “near field”         
distributed over the aperture, are essentially Fourier 
transforms of one another. 
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