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The facts about rainbows, 
and the short explanation of 
all the facts
Brief survey of the history of 
the study of rainbows
The geometrical optics of 
raindrops
Dispersion and the color of 
rainbows
Brewster’s angle and the 
polarization of rainbows

Rainbow and wild ros$e, Den$ali National 
Park. Photograph by Gal$en Row$ell.

Today in Physics 218: 
rainbows 
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The facts about rainbows

1. Rainbows appear as circles or circular arcs, centered on 
the point on the sky exactly opposite the sun (the 
antisolar point).
By “point,” we mean direction. The Sun is far enough 
away to consider sunlight to be an incoherent 
superposition of plane waves, with all their ks parallel.

2. One rainbow – the brightest (primary) one – lies in the 
direction 42° away from the antisolar point, or 138° away 
from the direction of the sunlight. One often sees another 
(secondary) rainbow 50° away from the antisolar point, or 
130° from the sunlight. 
The sky is noticeably darker between these rainbows, 
compared to other directions, a phenomenon known as 
Alexander’s dark band.



7 April 2004 Physics 218, Spring 2004 3

360° double rainbow over the Na P$ali coast, Kauai. Photograph by Ga$len R$owell.
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The facts about rainbows (continued)

3. In most cases, rainbows display a dispersed spectrum, 
which of course is their most striking feature. The primary 
bow is red on the outside (larger angles from the antisolar
point) and blue on the inside, and the secondary bow has 
its colors the other way around. 

4. Rainbows are very strongly, linearly polarized, with E
tangent to the rainbow’s arc (i.e. perpendicular to the 
plane of incidence).

5. The colors tend to be more distinct, or purer, nearer to the 
horizon than they are at the top of the bow.
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Rainbow over the Potal$a Palace. Photograph by Ga$len Row$ell.
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The facts about rainbows (continued)

6. One often sees additional colored bands on the inside
(smaller angles from the antisolar point) of the primary 
rainbow, in addition to the spectrum from red to violet 
that comprises the primary bow itself. The colors of the 
extra bands aren’t very distinct, and are somewhat 
stronger near the top of the bow than they are closer to the 
horizon.
The extra bands are called supernumerary arcs. 
In rare cases, supernumerary arcs also appear on the 
outside of the secondary rainbow, and are also brighter at 
the top of the bow than the bottom. 
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Double rainbow and the VLA, photographed in polarized light. Note the contrast 
of the dark band, and the variation in brightness of the supernumerary arcs. 
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The facts about rainbows (continued)

Why do rainbows look like that? The quick answer:
Facts 1 and 2 (angle of primary and secondary, and the 
dark band) are consequences of the spherical shape of 
raindrops, and of Snell’s law. The primary rainbow is 
reflected internally once within the raindrops; the 
secondary, twice.
Fact 3 (spectrum) is the result of the dispersion of water at 
visible wavelengths.
Fact 4 (polarization) is a Brewster effect: the first internal 
reflection takes place close to the Brewster angle.
Facts 5 and 6 (purity of spectra and supernumeraries) are 
outcomes of diffraction of light by raindrops.
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A brief survey of the history of the study of 
rainbows

Descriptions of rainbows are as old as literature itself. The 
first description we have of one of their subtle features – the 
dark band – is attributed to Alexander of Aphrodisias (c. AD 
200). 

The first recorded demonstration that spherical drops of 
water produce dispersed spectra at the rainbow angles 
was done in 1304 by Theodoric of Freiburg. Theodoric
used a spherical glass vessel and a pencil beam of sunlight 
for his demonstration.
The first theoretical descriptions of rainbows were those 
by René Descartes (who used ray tracing) and Baruch 
Spinoza (who used Cartesian analytical geometry), both 
in the 1620s.
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A brief survey of the history of the study of 
rainbows (continued)

Around 1666, Isaac Newton improved upon Spinoza’s 
calculation, using calculus and analytical geometry, and 
verified the calculations with the most accurate 
measurements up to that time. 
Thomas Young – he of the double-slit experiment – first 
recognized the supernumerary arcs as the effect of 
diffraction, in a paper published in 1803, though his 
calculation of the supernumerary positions didn’t agree 
very well with observations. 
George Airy – he of the circular-aperture diffraction 
pattern, and the transmission and reflection of plane-
parallel dielectrics – improved upon Young’s suggestion 
by using Fresnel’s diffraction theory to calculate the 
positions and strength of the supernumerary arcs (1838). 
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A brief survey of the history of the study of 
rainbows (continued)

It is possible, though very time-consuming and difficult, 
to solve the electrodynamic scattering problem exactly 
(and in full vector regalia) for light incident on spherical 
dispersive dielectrics. This was first done in 1908 by Mie
and Debye. The method they used, and the results they 
obtained, are usually referred to as “Mie theory,” and are 
encountered wherever there are spherical scatter-ers. 
Advanced references for Airy and Mie theory:
H.C. van de Hulst, Light scattering by small particles (Dover, 
1981)
Bohren, G.F., and Huffman, Absorption and scattering of 
light by small particles (Wiley, 1983)
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The geometrical optics of raindrops

Consider a plane electromagnetic wave incident on a 
spherical drop of water                 . In particular, let’s follow a 
small part of the wavefront incident a distance y from the 
center of the drop, as it refracts into the drop, reflects once 
internally, and emerges again. The direction of the refracted 
wavenumber is given by Snell’s law,

where the angles as usual are measured with respect to the 
surface normal. 

Note that all the surface normals are radii of the sphere, 
and that all the triangles in the figure are isosceles.

( )4 3n ≅

1sin sin .i nθ θ=

1k



7 April 2004 Physics 218, Spring 2004 13

z

y
r

r

r

θi

θ5

θ4

θ3

θ2

θ1

∆θ

A

B

C

D

The geometrical optics of raindrops (continued)
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The geometrical optics of raindrops (continued)

In an isosceles triangle the angles opposite the congruent 
sides are congruent, so

and             
The internal reflection follows the mirror-reflection rule, 
so

This makes all of the reflection/refraction angles within 
the drop congruent.
Thus

.
Let’s call the angles                       and
henceforth.  

θ θ1 2=
θ θ3 4=

θ θ θ θ5 4 1= = =arcsin sin arcsin sinn n ib g b g
θ θ θ= =i 5b g ′ = = = =θ θ θ θ θ1 2 3 4b g

θ θ2 3=
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The geometrical optics of raindrops (continued)

The reason that rainbows are bright at some particular angle 
is that there is a minimum (or maximum) in the scattering 
angle,               so that many rays with different y come out at 
nearly the same         near this extremum.  

To calculate this extremum, let’s place the origin of 
coordinates at the center of the sphere, so that the 
boundary of the sphere in the plane of incidence is 
described by                        and the illuminated side by 

( ) ,yθ∆
,θ∆

2 2 2 ,y z r+ =
2 2 . Then,z r y= − −

2 2
tan .

ydz
dy r y

θ= =
−
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The geometrical optics of raindrops (continued)

From this we have

From Snell’s Law we have

sin ,

cos .
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The geometrical optics of raindrops (continued)

This is all we need to know, to calculate the scattering 
angle in terms of y: at point A, the light is deflected by the 
angle           at point B, another             and at point D, 
another              Thus 

We can find the extrema in        by the usual method: 

;θ θ ′− 2 ;π θ ′−
.θ θ ′−
2 4

2 arcsin 4arcsin .
y y
r nr

θ θ θ π

π

′∆ = − +

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

θ∆

02 2 2 2 2
2 4 0  at ,d y y

dy r y n r y
θ∆ = − = =

− −
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The geometrical optics of raindrops (continued)

Thus no real extremum exists for n > 2. If water had an 
index greater than 2, there would be no rainbows. 
What kind of extremum is this? Test the second 
derivative:

( )2 2 2 2 2
0 0

2
0

1or , and
4

12 3 .
3

r y n r y

ry n

− = −

= −

d
dy
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r y
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2 4
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−
−e j e j/ /
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The geometrical optics of raindrops (continued)

Evaluate at the extremum:

( )
2 2

2
02 3/2 3/22 2

2 2 2 2 2

2

2 3/2 3/22 2

2 412 3 12 3
3 3

12 3 12 3
9 9

2 12 3 1 2
3 1 4 4

3 3

r rn nd y
dy r rr n n r n

n
r n n

θ
− −

∆ = −
⎛ ⎞ ⎛ ⎞

⎡ ⎤ ⎡ ⎤− − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥= −
⎢ ⎥⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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The geometrical optics of raindrops (continued)

Thus,

so if the extremum exists, it’s a minimum. 
Putting the numbers in, we get

( )
3/2 3/22 2

02 2 2 2

3/22

2 2

2 12 3 3 1 3
43 1 1

12 3 3 0 ,
2 1

d ny
dy r n n

n
r n

θ
⎡ ⎤− ⎛ ⎞ ⎛ ⎞⎢ ⎥∆ = −⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦

− ⎛ ⎞
= >⎜ ⎟

−⎝ ⎠
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2 arcsin 4arcsin

1 12 arcsin 12 3 4arcsin 12 3
3 3
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n n
n

θ π

π

⎛ ⎞ ⎛ ⎞∆ = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The geometrical optics of raindrops (continued)

That is: 42.03° from the antisolar direction, for n = 4/3.

In optics, bright features formed from such extrema of 
reflection or refraction angles are called caustics. 

2 2

min
1 4 1 42 arcsin 12 3 4arcsin 12 3
3 3 4 3

2.4080 radians 137.97 .

θ π
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟∆ = − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
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Brightest scattered light

The geometrical optics of raindrops (continued)
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The geometrical optics of raindrops (continued)

Once can calculate similarly the position of the secondary 
rainbow, and find out whether it’s a maximum or minimum 
of scattering angle. You will do this on Homework #7; it will 
turn out that the secondary rainbow is a maximum of 
and that

Note that these results are in excellent accord with 
observations.
Note also that no light is scattered into the range 

this neatly accounts for Alexander’s dark 
band.

,θ∆
max 130 .θ∆ =

130 138 :θ∆ = −
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Dispersion in water, and the colors of the rainbow

The refractive index of water varies, owing to dispersion: it’s 
about 1.330 at λ = 0.7 µm (red) and 1.342 at 0.4 µm (violet) –
so the peaks in the intensity of scattered light of shorter 
wavelength occur at slightly larger         and the scattered 
light covers the range

The angular spread of sunlight – until now considered to 
be zero – is actually about 0.5° (the angular diameter of 
the Sun). This is smaller than the spread of scattering 
angle for plane-wave light (1.73°), so the colors can be 
expected to be seen distinctly.  
Thus the primary rainbow should be about 2.23° in width 
– in excellent accord with observations. 

,θ∆
137.5 139.2 .θ∆ = ° − °
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Polarization of rainbows

For light incident at                (the “rainbow ray”), the internal 
reflection takes place at incidence angle 

This is pretty close to the Brewster angle:

So light with E in the plane of incidence will not reflect very 
well. Since rainbows need this internal reflection, it follows 
that they should be polarized strongly, perpendicular to the 
plane of incidence (i.e. tangent to the rainbow’s arc). 

So far we’ve explained facts 1-4!

0y y=

20 1arcsin arcsin 12 3 40.3 .
3

y
n

nr n
θ ⎛ ⎞ ⎛ ⎞′ = = − = °⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

1arctan 36.9 .B n
θ ⎛ ⎞= = °⎜ ⎟

⎝ ⎠


