
Physics 218 Practice Midterm Exam: Solutions 

Spring 2004 

 

If any of these solutions seems obscure, please contact us so we can explain it better.  

______________________________________________________________________________ 

Problem 1 (20 points) 

In a certain material, the group velocity of electromagnetic waves is twice the phase velocity. 
Derive an expression for these waves’s wavenumber, k, as a function of their angular frequency, 
ω.  
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Here 0 0 and kω  are constants, the evaluation of which would require more information 
about the material. (One could have done with just one integration constant, of course, 
but the formula looks more symmetrical this way.) 

______________________________________________________________________________ 

Problem 2 (40 points) 

Light, propagating in vacuum, is incident obliquely (incidence angle Iθ ) on the planar surface of 
a good conductor ( )04 ,  or  in MKS unitsrσ εω π σ ε ε ω for which 

( )0 01 ,  in MKSε µ ε ε µ µ= = = = . The light is polarized, with the electric field in the plane of 
incidence. 
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a. What is the angle of the transmitted wavevector with respect to the normal? (Hint: it's 
not equal to Iθ .) 

 In a good conductor, 
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 since by assumption the conductivity is large. (Never mind the fact that’s it’s 
complex; it’s still small enough to consider zero to be a good approximation.) 
Thus, 

0 .Tθ =  

b. Using the electromagnetic boundary conditions, write down enough equations to 
determine the reflected and transmitted electric field amplitudes. (Don't solve them yet.) 

 Recall that ˆ ck
ω

=B k E¥  in a conductor, and that µ= =H B B  here: 
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 Or, with ( )1 cos  and 2 1 ,I Tck iα θ β ω πσ ω= = = +  
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 The answer is the same in MKS, if you take ( ) 2 1 iβ σ ω= +  instead.  

c. Solve for the reflected electric field amplitude, in terms of the incident amplitude, and 
from this derive the time-averaged intensity reflection coefficient .R II Iρ =  

 Multiply the first boundary condition through by β α  and subtract: 
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 The intensity reflection coefficient is therefore 
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  again with ( )1 cos  and 2 1 .I Tck iα θ β ω πσ ω= = = +  

d. Is there a “Brewster’s angle” for reflection from conductors? Explain why or why not. 

 In dielectrics, 0ρ =  at I Bθ θ= . Here 0ρ =  only if ( )( ) 0α β α β∗ ∗− − = , and this in 

turn only gives a single value of α  (and Iθ ) if ;β β∗=  that is, if β  is real. But β  
can’t be real for a conductor, so 0ρ ≠  at all incidence angles: there’s no Brewster 
angle in this sense. (There does turn out to be a minimum in the intensity 
reflection coefficient, though.) 

______________________________________________________________________________ 

Problem 3 (40 points) 

Frustrated total reflection. Light with angular frequency ω, propagating in glass (n = 1.5) and 
polarized in the plane of incidence, encounters a plane-parallel, vacuum-filled gap at an angle 
θ greater than ( )arcsin 1 n  -- that is, an angle at which total reflection would be expected for a 
single surface. Glass fills the whole Universe, apart from the gap.  
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Calculate the amplitude of the electric field transmitted through the gap. Is it possible to make 
the gap transparent, at this frequency? 

Call the left and right glass regions 0 and 2 respectively, and the gap 1. The admittances 
of these regions, for TM waves as shown in the figure, are 
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(using cgs units, mind you; the 0 subscripts just indicate the medium containing the 
incident light) where cos Tθ  is determined from Snell’s Law: 
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and is purely imaginary. The phase delay for light propagating across the vacuum gap 
is 
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This is all we need to know for the elements of the characteristic matrix of the vacuum 
gap: 
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Thus the amplitude transmission coefficient t is 
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Everything besides the i in this expression is real, so it’s not too hard to get the intensity 
transmission coefficient: 
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with  and φ α  as given above. (Same in cgs and MKS.) 

The only way in general for the gap to be transparent – i.e. for 1τ =  – is for 
2 2sin 1 0I

d n
c
ωφ θ= − = , because ( ) ( )cosh 0 1 and sinh 0 0.= =  This in turn can be true 

for finite ω  if d = 0 (no gap), so it isn’t possible to make the gap transparent. 
(Interestingly, 1τ =  for any finite d if sin 1 .I nθ =  This pathological case, however, 
requires that the glass-vacuum planes be infinite, which is why the problem was 
specified with sin 1 .I nθ > ) 

Don’t worry. This solution is indeed a little too long for the problem to be put on a real 
exam.  
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______________________________________________________________________________ 

Problem 4 (20 points) 

Consider using, as a gauge condition, 

0 everywhere,
0 .

V =
≠A

 

Show explicitly that this can describe electromagnetic waves in vacuum; that is, find the 
appropriate A, and show that it gives electric and magnetic fields with the correct properties of 
waves in a vacuum.  

There are more elegant solutions to this problem than the following, but this is simplest 

in concept. If V = 0, then 1
c t
∂

= −
∂
AE . Let’s take ( )0 cos ,tω= −E E k r◊  which is obviously 

a solution to the wave equation for E; or, with the right choice of axes, 
( )0 cos ,kz tω= −E E  with 0E  perpendicular to the z axis. Then, 

( ) ( )0 0cos sin constant .cc kz t dt kz tω ω
ω

= − − = − +∫A E E  

We can take the constant to be zero and still get the same fields, as we’re about to see: 
the magnetic field would thus be 
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This, of course, is well known to be the plane-wave solution to the wave equation for B. 
So the gauge choice correctly gives the properties of plane waves. But we showed 
earlier this semester than any electromagnetic wave in vacuum is a superposition of 
plane waves (Griffiths problem 9.4, on problem set 2). Thus this gauge is good for all 
electromagnetic waves in vacuum.  

______________________________________________________________________________ 


