
Physics 218 Practice Final Exam: Solutions 

Spring 2004 

Problems 2 (a and b), 3, 4, and 5 (a and c) were on the real final exam last time I taught 
PHY 218. I already used the remaining problems on that exam for the practice midterm. 

______________________________________________________________________________ 

Problem 1 (50 points) 

a. A spherical shell (inside radius a, outside radius b) has charge cosQ tω  spread on its 
outer surface, and charge cosQ tω−  spread uniformly on its inner surface. What is the 
electric field in the far-field zone, a distance r bλ� �  from the center of the sphere? 

 Both spheres act as if their charge is concentrated at their centers. The total 
charge is zero; so are all of the multipole moments, because the positive and 
negative charges are located in exactly the same place. Because of the latter, there 
is no radiation; E = 0 everywhere in the far field.  

b. Another shell is the same in all respect to the first one, except that the centers of the inner 
and outer surfaces are displaced with respect to one another by a distance d. What is the 
electric field in the far-field zone, a distance r bλ� �  from the center of the sphere? 

 Now there’s a finite dipole moment: 

 ˆ cos ,Qd tω=p z  

 where ẑ  points along the line between the centers, from minus to plus. The 
system thus radiates like a dipole, and in the far field domain the electric field is 
given as usual by 

 ( )
2

2
sinˆ cosQd t r c

rc
ω θθ ω= − −E  

 in cgs units. (Swap the 2
01  for 4c µ π  to get the answer in MKS units.) 

______________________________________________________________________________ 

Problem 2 (50 points) 

a. Calculate the distance 0y  from the center of a rain drop, at which the “rainbow ray” is 
incident: light that corresponds exactly to the scattering-angle extremum that in turn 
corresponds to the primary rainbow. Refer to the diagram at right for the geometry. 
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 In the coordinate system of the diagram, in 
which z is the initial direction of the light, 

2 2
tan ,ydz

dy r y
θ= =

−
 

 so 

( )

( )

2 2 2

2 2 2

22 2 2

sin ,

cos 1 .

y y
rr y y

r y y
rr y y

θ

θ

= =
− +

−
= − = − −

− +

 

 Snell’s Law implies that  

 1sin sin .y
n nr

θ θ′ = =  

 Thus the scattering angle is, as a function of y,  

 2 4 2 arcsin 4arcsin .y y
r nr

θ θ θ π π⎛ ⎞ ⎛ ⎞′∆ = − + = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 Find the minimum as usual: 

 
12 2 2 2 2

2 arcsin 4 arcsin

2 4 0 at ;

y yd d d
dy dy r dy nr

y y
r y n r y

θ ⎛ ⎞ ⎛ ⎞∆ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − = =
− −

 

 
( )2 2 2 2 2

1 1

2
1

4

12 3 .
3

n r y r y

ry n

− = −

= −
 

b. Repeat the calculation of part a, but for the secondary rainbow. Again, refer to the 
diagram at right for the geometry.  

 For the secondary rainbow, 

θ ′

θ ′

θ ′
θ ′

θ

θ

θ∆

r

y
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2 arcsin 6arcsin ,y y
r nr

θ ⎛ ⎞ ⎛ ⎞∆ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 and so 

2 2 2 2 2

2

2 6 0

at ;

d
dy r y n r y

y y

θ∆ = − =
− −

=

 

( )2 2 2 2 2
2 2

2

2

9

9 .
8

n r y r y

ny r

− = −

−
= −

 

c. In the Bible (Genesis 9:13-15), it is written that shortly after the Flood subsided, God 
said to Noah and his family,  

I have set my bow in the clouds, and it shall be a sign of the covenant between me and the earth. 
Henceforth when I bring clouds over the Earth and the bow is seen in the clouds, I will remember 
my covenant that is between me and you and every living creature of all flesh; and the waters 
shall never again become a flood to destroy all flesh.  

 So before the Flood, raindrops did not produce rainbows, but afterward they did. 

 Describe how the refractive index of water would have had to change during this 
conversation, in order for the optical properties of raindrops to change like this.  

 I think this is the earliest literary reference to rainbows; had to work it in to the 
course somehow… 

 Arguing from the results of parts a and b (which would certainly be good 
enough to get full credit): There would be no rainbows, of at least the primary 
and secondary sort, if n were large enough that 1 2 and  y y  came out imaginary, 
which is the case for n > 3. So the index had to start off greater than 3, and drop 
suddenly to its present value near 4/3.  

 If you want to be really clean about it, note that the thN  rainbow lies at 

 
( ) ( )

( )

2 2 1 1,2,...

2 arcsin 2 1 arcsin ,

N N N
y yN N
r nr

θ θ θ π

π

′∆ = − + + =

⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 such that 

θ∆

θ

θ ′

θ ′ θ ′

θ ′
θ ′

θ ′
θ

y r
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 ( )
2 2 2 2 2

2 12 0 at ;N
Nd y y

dy r y n r y
θ

+
∆ = − = =

− −
 

 

( ) ( )
( ) ( )

( )
( )

22 2 2 2 2

2 22 2 2

2 2

2

1

1 1 1

1
.

1 1

N N

N

N

n r y N r y

y N r N n

N n
y r

N

− = + −

⎡ ⎤ ⎡ ⎤+ − = + −⎣ ⎦ ⎣ ⎦

+ −
= ±

+ −

 

 Thus there is no thN  rainbow if 1.n N≥ +  Since in principle one could consider 
N as high as one likes, n would formally have to be infinite in order not to have 
rainbows of any order. In practice, though, it would suffice to have n simply a 
good deal larger than 1 (say, 10), in order that the high-order rainbows still 
allowed would be very faint, owing to the large reflectivity of the drop at high 
index.  

______________________________________________________________________________ 

Problem 3 (50 points) 

Diffraction of a Gaussian beam. The 
electric field in a laser beam, as the beam leaves 
the end of the laser, is linearly polarized 
vertically, is axially symmetric, and has a 
magnitude which depends upon distance from 
the laser's axis as follows: 

( )2 2 22 2 00
0 0 .

x y ss se e
′ ′− +−= =E E E  

The laser beam is pointed perpendicular to a 
screen which lies a very long distance r ( )0s�  
away from the laser. What is the electric field on this screen, as a function of distance 

2 2q x y= +  from the point on the screen at which the laser is aimed? 

Make a rough plot of the electric field amplitude as a function of  q. 

Hint: work in Cartesian coordinates initially, and complete the square in the exponent of the 
integrand, to carry out the integral. 

z

x

y

Screen

Laser
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( )
( ) ( ) ( )

2 2 2
0

2 2 2
0

0

0

(a Gaussian),

.x y

x y s i t

i kr t x y s i k x k y
F

e e

e e e dx dy
r

ω

ω

λ

′ ′− + −

∞ ∞− ′ ′ ′ ′− + − +

−∞ −∞

=

′ ′= ∫ ∫

NE E

E E
 

 Note that 

 

2 22 2
0 0

2 2
0 0

2 2 2
0 0

0

2 2

.
2 4

x x
x x

x x

ik s ik sx xik x ik x
s s

ik s k sx
s

⎛ ⎞′ ′ ⎡ ⎤ ⎡ ⎤′ ′− − = − + + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

⎛ ⎞′
= − + −⎜ ⎟

⎝ ⎠

 

 Similarly for .y′  The integral becomes 

( ) ( )
22

002 2 2
0 004 220 .

yx
x y

ik syx ik si kr t k k s ss
F

e e e e dx dy
r

ω

λ

⎛ ⎞′⎛ ⎞′∞ ∞− − +− + ⎜ ⎟⎜ ⎟− + ⎝ ⎠ ⎝ ⎠

−∞ −∞

′ ′= ∫ ∫
EE  

 Now change variables: 

 

0

0 0

0

0 0

2

2

x

y

ik sx dxu du u
s s

ik sy dyv dv v
s s

′ ′
= + = −∞ < < ∞

′ ′
= + = −∞ < < ∞

 

( ) ( ) ( )2 2 2 2 2
0

2 40 0 ,x y
i kr t k k s u v

F
s e e e dudv

r

ω

λ

∞ ∞− − + − +

−∞ −∞

= ∫ ∫
EE  

 and change them again: 

 
2 2 2

, 0 , 0 2 ;
tan

u v dudv d d
v u

ρ ρ ρ φ ρ φ π
φ

⎫= + ⎪ = < < ∞ < <⎬
= ⎪⎭

 

( ) ( )2 2 2 20
22 40 0

0 0
,x y

i kr t k k s
F

s e e d e d
r

πω
ρφ ρ ρ

λ

∞− − + −= ∫ ∫
EE  

 and change one of them yet again, and the integrals become trivial: 

 2 , 2 , 0 ,w dw d wρ ρ ρ= = < < ∞  
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( ) ( )

( ) ( )

2 2 2
0

2 2 2
0

22 40 0

0 0
2 40 0

2

.

x y

x y

i kr t k k s w
F

i kr t k k s

s e e d e dw
r

s e e
r

πω
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π
λ

∞− − + −

− − +

=

=

∫ ∫
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 We are asked to note that ( )2 2 2 2 2 2 2 2 2 2 ,x yk k k x r y r k q r+ = + =  which makes it 

( ) 2 2 2 2
0

2
40 0 .

i kr t
k q s r

F
s e e

r

ωπ
λ

−
−=

EE  

 This is also a Gaussian. Gaussian beams stay Gaussian as they propagate, 
because the Fourier transform of a Gaussian is another Gaussian.  

  

Near field Far field

02s

0E

02r ks

2
0 0s
r

π
λ
E

 

______________________________________________________________________________ 

Problem 4 (50 points) 

Electric quadrupole radiation. Two oscillating 
electric dipoles, separated by a distance d, are 
oriented as shown in the figure at right. Using what 
you know about the potentials for individual 
dipoles, calculate the scalar potential V in the far 
field ( )r dλ� � .   

Hints: Keep only terms that are first order in d.  
Note that neither dipole lies at the origin. 

Superpose the retarded potentials from the two 
dipoles, which are 

0 cos sin .pV t
c c
ω θ ω± ±

±
±

⎛ ⎞= −⎜ ⎟
⎝ ⎠
r

r
∓  

y
d

z

P

r

+r

−r

θ

0 cosp tω

0 cosp tω−

θ+

θ−
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We can use the law of cosines and the binomial theorem to obtain approximations for 
±r : 

 

2
2 2 cos 1 cos 1 cos ,

2 2 2
1 1 1 cos ,

2

d d d dr r r r
r r

d
r r

θ θ θ

θ

±

±

⎛ ⎞ ⎛ ⎞= + ≅ ≅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞≅ ±⎜ ⎟
⎝ ⎠

r

r

∓ ∓ ∓
 

to first order in d. Note also from the diagram – specifically, the triangle sides that lie 
along the z axis – that  

 cos cos ,
2
d rθ θ± ± ± =r  

or 

 ( )
( )

2 2

2 2

cos 2 1cos cos 1 cos
2 2

cos cos ignoring terms in !
2 2

cos 1 cos cos sin ,
2 2

r d d dr
r r r

d d d
r r

d d
r r

θ
θ θ θ

θ θ

θ θ θ θ

±
±

⎛ ⎞ ⎛ ⎞= ≅ ±⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≅ ±

= − =

r
∓ ∓

∓

∓ ∓

 

also to first order in d. Thus the retarded-time factor becomes 

 

0

0 0

0 0

sin sin 1 cos sin cos
2 2

sin cos cos cos sin cos
2 2

sin cos cos ,
2

r d dt t t
c c r c

d dt t
c c

dt t
c

ωω ω θ ω θ

ω ωω θ ω θ

ωω θ ω

± ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = ±⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞= ±⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≅ ±

r ∓

 

where we have abbreviated 0 ,t t r c= −  and have used the small-angle approximation 
for the terms in 2 ,d cω  to first order in d.  

Putting all this together, we get, for the retarded potentials of the two dipoles,  

 

0

20
0 0

cos sin

1cos sin 1 cos sin cos cos .
2 2 2

pV t
c c

p d d dt t
c r r r c

ω θ ω

ω ωθ θ θ ω θ ω

± ±
±

±

⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞= ± ±⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

r
r

∓

∓ ∓
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When multiplying it out, remember to drop terms of order 2d  or higher: 

 
( )

2 20
0 0

2 2 20
0 0 0

cos sin cos sin cos cos
2 2 2

cos sin cos cos cos sin sin .
2 2

p d d dV t t
cr r r c

p d dt t t
cr c r

ω ωθ θ θ ω θ ω

ω ωθ ω θ ω θ θ ω

±
⎛ ⎞⎛ ⎞= ± ±⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
⎛ ⎞= ± ± −⎜ ⎟
⎝ ⎠

∓ ∓

∓
 

Now we can finally do the superposition: 

 

( )

( )

( )

2 2 20
0 0 0

2 2 20
0 0 0

2 2 20
0 0

2
20

02

cos sin cos cos cos sin sin
2 2

cos sin cos cos cos sin sin
2 2

cos cos cos sin sin

cos cos co

V V V
p d dt t t
cr c r
p d dt t t
cr c r

p d dt t
cr c r

p d ct
rc r

ω ωθ ω θ ω θ θ ω

ω ωθ ω θ ω θ θ ω

ω ω θ ω θ θ ω

ω
θ ω

ω

+ −= +

⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠
⎛ ⎞+ − − −⎜ ⎟
⎝ ⎠
⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

= − + ( )2 2
0s sin sin .tθ θ ω⎛ ⎞−⎜ ⎟

⎝ ⎠

 

Since in the far field we have r c ω� , we can neglect the second term in the brackets 
compared to the first one, and obtain a rather simple expression: 

 
2 22 2

0 0
02 2

cos coscos cos .p d p d rV t t
r r cc c

ω ωθ θω ω⎛ ⎞= − = − −⎜ ⎟
⎝ ⎠

 

Multiply the right side by 01 4πε  to get the MKS version of the answer.  

______________________________________________________________________________ 

Problem 5 (50 points) 

a. Using the electromagnetic field tensor Fµν  and the dual tensor ,Gµν  show that 

 2 2 2 2 2(cgs units) or         (MKS units)E B E c B− −  

 and 

 E B◊  

 are invariant under Lorentz transformations.  
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 There are three invariants one can make by the inner products of Fµν  and Gµν . 
Note while doing the sums that a zero covariant index brings in an extra minus 
sign, and that the diagonal elements are zero: 

 

( )

01 01 02 02 03 03 10 10 12 12 13 13

20 20 21 21 23 23 30 30 31 31 32 32

2 2 2 2 2 2 2 2 2 2 2 2

2 2

01 01 02 02 03 03 10 10 12 12 13 13

2

2 ;

x y z x z y y z x x y x

F F F F F F F F F F F F F F

F F F F F F F F F F F F

E E E E B B E B B E B B

E B

G G G G G G G G G G G G G G

G

µν
µν

µν
µν

= − − − − + +

− + + − + +

= − − − − + + − + + − + +

= −

= − − − − + +

−

( )

0 20 21 21 23 23 30 30 31 31 32 32

2 2 2 2 2 2 2 2 2 2 2 2

2 2

01 01 02 02 03 03 10 10 12 12 13 13

20 20 21 21 23 23 30 30 31 31 32 32

2 ;

x y z x z y y z x z y x

x x y y

G G G G G G G G G G G

B B B B E E B E E B E E

B E

F G F G F G F G F G F G F G

F G F G F G F G F G F G
E B E B E

µν
µν

+ + − + +

= − − − − + + − + + − + +

= −

= − − − − + +

− + + − + +
= − − −

4 .

z z x x z z y y

y y z z x x z z y y x x

B E B B E B E
E B B E B E E B B E B E

− − −

− − − − − −

= − E B◊  

 The first two results each show that 2 2E B−  is Lorentz invariant. The third shows 
that E B◊  is invariant. (Q.E.D.) It works similarly in MKS units except for the 
stray factors of c.  

b. Suppose that, in a certain inertial frame S, the electric field E and the magnetic field B 
are neither parallel nor perpendicular. Show that in a different inertial frame ,S  moving 
relative to S at velocity v given by 

 2 2 2 2 2 2 2
1(cgs units)  or        (MKS units),c

B E B E cγ γ
=

+ +
E B E Bv ¥ ¥    , 

 the fields  and E B  are parallel.  

 Suppose the two frames move relative to one another along the x direction, so we 
can use our usual forms of the Lorentz transformation. If x is also the direction of 

,E B¥  as we are asked to show, then E and B lie in the y-z plane. Let ψ  be the 
angle between the two fields in S, and for simplicity let one of them, say E, point 
along z; then cos  and sinz yB B B Bψ ψ= = . Thus the relativistic transformations 
of the fields give us 
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( ) ( )
( ) ( )

cos , sin ,

sin , cos .
y z

y z

E B E E B

B B E B B

γ β ψ γ β ψ

γ ψ β γ ψ

= − = +

= + =
 

 The x components of the field are still zero; this component is left unchanged by 
the transformation.  and E B  are parallel if the ratios of their y and z components 
are equal: 

 
( )

( )sincos .
sin cos

y y

z z

E B B EB
E E B B B

γ ψ βγβ ψ
γ β ψ γ ψ

+
= − = =

+
 

 Multiply it out: 

 
( )( )

( )
2 2

2 2 2 2

cos sin sin

sin 1 sin ;

B E B B E

E B EB

β ψ β ψ ψ β

β β ψ β ψ

− = + +

= + + +
 

 
( ) ( )

( )

2 2 2 2 2

2

2 2 2 2 2

cos sin 1 sin 0

1 sin 1 .

E B EB

EB

E B E B

β β ψ ψ β ψ

β ψ
β

γ

+ + + + =

+
= − = −

+ +

E B¥  

 The way we’ve set up the coordinate axes, though, the cross product of the fields 
is 

 
ˆ ˆ ˆ

0
ˆ ˆ0 0 sin

sin cos
0 sin cos

E
E EB

B B
B B

ψ
ψ ψ

ψ ψ
= = = −
x y z

E B x x¥  

 (I guess that means I should have pointed B along the z axis), so the minus signs 
cancel: 

 2 2 2 ,  q.e.d.c
E Bγ

= −
+

E Bv ¥  

c. Is there a frame in which the electric and magnetic fields are perpendicular? 

 No. Since the fields are not perpendicular in the original frame, 0,≠E B◊  and 
since this quantity is Lorentz-invariant, they can’t be perpendicular in any other 
frame either.  
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______________________________________________________________________________ 

Problem 6 (50 points) 

Unpolarized light with angular frequency ω  is incident from 
vacuum, at angle θ , on a planar conducting surface. 
Calculate the degree of polarization,  

,
I I
I I

δ ⊥

⊥

−
=

+
&

&
 

of reflected light, and describe in a few words the state of the 
light’s polarization: nature, magnitude and direction. (Here 

 and ⊥ &  mean perpendicular and parallel to the plane of 
incidence.) 

We need to handle the TE ( )⊥  and TM ( )&  parts of the 
incident light separately. TE first: the boundary 
conditions on the components of E and H parallel to the 
surface are 

( )
0 0 0

2
1 1 0 1 1 0 0

1 2

,

1 1cos cos cos ,

I R T

I I R I T T

E E E

ckE E Eµ ε θ µ ε θ θ
µ µ ω

+ =

− + = −

� � �

�� � �

which we can rearrange in a familiar way: 

 
0 0 0

1 2
0 0 0 0

1 2

,

cos .
cos

I R T

T
I R T T

I

E E E

ckE E E Eθ µ αβ
θ ε µ ω

+ =

⎛ ⎞⎛ ⎞
− = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

� � �

�� � � � �  

Multiply the first condition by αβ�  and subtract: 

 
( ) ( )0 0

0

0

1 1 0 ;

1 .
1

I R

R

I

E E

E
E

αβ αβ

αβ
αβ⊥

− + + =

⎛ ⎞ −
=⎜ ⎟ +⎝ ⎠

� � � �

� �
� �

 

And now for TM, for which the boundary conditions on the components of E and H 
parallel to the surface are 

z

x

θ

Vacuum     Conductor
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( )

0 0 0

2
1 1 0 1 1 0 0

1 2

cos cos cos ,

1 1 ,

I I R I T T

I R T

E E E

ckE E E

θ θ θ

µ ε µ ε
µ µ ω

+ =

− =

� � �

�� � �  

which can also be rearranged in a familiar way, using the same  and ,α β�  and solved 
just as before: 

 

0 0 0 0

1 2
0 0 0 0

1 2

0 0

0

0

cos ,
cos

,

1 1 0 ;

.

T
I R T T

I

I R T T

I R

R

I

E E E E

ckE E E E

E E

E
E

θ α
θ

µ β
ε µ ω

β β
α α

α β
α β

+ = =

− = =

⎛ ⎞ ⎛ ⎞
− + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ −

=⎜ ⎟ +⎝ ⎠&

� � � �

�� � � � �

� �� �

� �
� �

 

Now,  

 
2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 1 * *
1 1 * *

1 * * ;
1 * *

1 * *
1 * *
1

R R

I I

I I
I I

I I
I I

αβ αβ α β α β
αβ αβ α β α β

αβ αβ α β α αβ αβ β
αβ αβ α β α αβ αβ β

αβ αβ α β α αβ αβ β
αβ αβ α β α αβ αβ βδ

⊥

⊥

⊥

⎛ ⎞ ⎛ ⎞ − − − −
± = ±⎜ ⎟ ⎜ ⎟ + + + +⎝ ⎠ ⎝ ⎠

− − + − − +
= ±

+ + + + + +

− − + − − +
−

− + + + + + += =
+ −

&

&

&

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

2 2 2 2

2 2 2 2

.
* *

1 * *
αβ αβ α β α αβ αβ β
αβ αβ α β α αβ αβ β

− + − − +
+

+ + + + + +

� � � �
� � � �

 

This is an ugly expression, but at normal incidence ( )1α =  it simplifies considerably: 

 

2 2

2 2

2 2

2 2

1 * 1 *
1 * 1 * 0 ;
1 * 1 *
1 * 1 *

β β β β β β
β β β β β βδ
β β β β β β
β β β β β β

− − + − − +
−

+ + + + + += =
− − + − − +

+
+ + + + + +

� � � �
� � � �
� � � �
� � � �

 

unpolarized light reflected at normal incidence is still unpolarized. At oblique incidence 
it obviously doesn’t vanish, so the reflected light is polarized.  
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I wouldn’t expect you to go any farther than this, on a real test. (I wish I had written the 
problem just in terms of the fields; I didn’t think the result was going to be this ugly.) It 
turns out that the polarization is slight ( a few percent at most), and perpendicular to 
the plane of incidence; that is, δ  turns out to be small and positive.  


