Separation of a Signal of Interest from a Seasonal Effect in Geophysical Data: I. El Niño/La Niña Phenomenon

David H. Douglass
Department of Physics and Astronomy, University of Rochester, Rochester, USA
E-mail: douglass@pas.rochester.edu
Received April 12, 2011; revised July 9, 2011; accepted September 2, 2011

Abstract

Geophysical signals N of interest are often contained in a parent signal G that also contains a seasonal signal X at a known frequency f_X. The general issues associated with identifying N and X and their separation from G are considered for the case where G is the Pacific sea surface temperature monthly data, SST3.4; N is the El Niño/La Niña phenomenon and the seasonal signal X is at a frequency of $1/(12 \text{ months})$. It is shown that the commonly used climatology method of subtracting the average seasonal values of SST3.4 to produce the widely used anomaly index $\text{Nino}3.4$ is shown not to remove the seasonal signal. Furthermore, it is shown that the climatology method will always fail. An alternative method is presented in which a $1/f_X$ moving average filter is applied to SST3.4 to generate an El Niño/La Niña index N_L that does not contain a seasonal signal. Comparison of N_L and $\text{Nino}3.4$ shows, among other things, that estimates of the relative magnitudes of El Niños from index N_L agree with observations but estimates from index $\text{Nino}3.4$ do not. These results are applicable to other geophysical measurements.

Keywords: El Niño/La Niña, Climate, Seasonal

1. Introduction

The study of many geophysical phenomena starts with a parent signal G that contains a signal of interest N plus a seasonal signal X at frequency f_X and its harmonics. The first task of many studies is to separate X from G to obtain N. If the spectral content of N lies mostly at frequencies below f_X, then separation may straightforwardly be achieved: the Fourier transform of G is taken; the part of the spectrum at f_X and higher frequencies is removed and the transform back to the time domain yields N. Douglass [1] has pointed out that the separation can easily be obtained in the time domain by applying a $1/f_X$ moving average filter F to G. Specifically, application of F to G yields a low frequency (lower than f_X) signal N_L containing the signal of interest. This paper shows, additionally, that subtraction of N_L from G produces a high frequency (f_X and higher) signal N_H that contains the seasonal signal. These methods are demonstrated for the case where G is the equatorial Pacific sea surface temperature (SST), N is an index describing the El Niño/La Niña phenomenon, and the seasonal frequency f_X is $1/(12 \text{ months})$ which requires that F be a 12-month moving average filter.

Moving average filters applied to SST data have been used by Federov and Philander [2] (FP) to study the El Niño/La Niña phenomenon. They applied a 9-month moving average filter to SST data. An El Niño/La Niña anomaly signal was obtained by subtracting the average SST from the filtered signal. This anomaly was compared to one where the subtraction was a 10-year moving average. The differences were considerable. They stated: “… the episodes [El Niños] of 1982 and 1997 appear less exceptional…” It is noted that the FP anomalies differ from those calculated with a 12-month filter and those calculated from the climatology method (next paragraph).

A widely used different scheme is the “climatology” method that purports to remove the seasonal signal. For monthly data the climatology (C) is a set of 12 numbers—one for each month where the value for each month is an average over G for a fixed period (usually 30 years).

An index N is defined which is the value of G for each month minus the corresponding value of C. This method is applied to the temperature data, SST3.4, from Pacific SST Region3.4 to create the commonly used anomaly index $\text{Nino}3.4$ [3]. It is implied that $\text{Nino}3.4$ is “seasonal free”. However, Douglass [1] showed that the Fourier spectrum of $\text{Nino}3.4$ had a substantial spectral compo-
In Section 2, data sources and the filter F are described. The new indices are also defined. In Section 3 various indices are calculated and discussed. The Lyapunov exponents of various time series are also determined. Section 4 contains a discussion. Section 5 has a summary.

2. Data Source and Methods

All data are monthly time series.

2.1. Source

In a general study with the objective of finding the location in the tropical Pacific with the strongest correlation with the core El Nino Southern Oscillation (ENSO) phenomenon Barnston, Chelliah and Goldenberg [4] (BCG) defined a sea surface temperature (SST) Region 3.4 (latitude: 5S to 5N; longitude: 120W - 170W) that overlaps previously defined Region 3 and Region 4. The average SST of Region 3.4 is named \(\text{SST}_{3.4} \) and ranges between 24°C and 30°C. BCG defined a corresponding index of anomalies, \(\text{Nino}_{3.4} \), which is \(\text{SST}_{3.4} \) with the seasonal signal nominally removed by the climatology method (next section). The monthly values of \(\text{SST}_{3.4} \) and \(\text{Nino}_{3.4} \) are given by the Climate Prediction Center [3]. The values are from January 1950 to the present (February 2011). Figure 1(a) shows \(\text{SST}_{3.4} \) and \(\text{Nino}_{3.4} \) is shown in Figure 2(a). The familiar El Niños of 1983-1984 and 1997-1998 are indicated.

2.2. Climatology Method

This is a scheme that purports to remove the seasonal effect from geophysical data. For the monthly \(\text{SST}_{3.4} \) data the climatology \(C \) is a set of 12 numbers—one for each month where the value for each month is an average over \(\text{SST}_{3.4} \) for a fixed period (usually 30 years). The amplitude of the periodic function varies from January to December and is the same for each year. The second part of the climatology method applied to \(\text{SST}_{3.4} \) is to define an anomaly index \(\text{Nino}_{3.4} \) that is the value of \(\text{SST}_{3.4} \) for each month minus the corresponding value of \(C \). It is noted for later discussion that mathematically \(C \) is a function consisting of a constant plus a periodic term (period = 1 year) with monthly amplitudes that are the same for each year.

2.3. The 12-Month Digital Filter \(\mathcal{F} \)

Consider monthly time-series data that have been put through the digital filter

\[
\mathcal{F} = 12\text{-month symmetric moving average } \text{"box" digital filter.} \quad (1)
\]

This filter is a low pass filter that allows frequencies
lower than (1/12) month\(^{-1}\) to pass with only slight attenuation. This filter has an additional important property that is not generally recognized. The Fourier transform of \(\mathcal{F} \) is
\[
H(f) = \sin(\pi 2f)/\sin(\pi f),
\]
which has zeros at multiples of the frequency \(f = (1/12) \) month\(^{-1}\) [5]. Thus, signals whose frequencies are exactly \(f = (1/12) \) month\(^{-1}\) and its harmonics are removed. This second property is highly desirable in reducing an unwanted seasonal signal that contains an annual component and its harmonics. One frequently sees the use of \(k \)-month filters where \(k \) has values 3, 5, 7, 9, 11, 12, 13 in attempts to reduce the seasonal signal; the \(k = 12 \) filter is obviously best for removal of such a signal. Because the center of this filter is between time series data points, one has to place the center of the filter one half interval before or after the reference data point. Here, the choice is “after”. The 12-month filter is then described as “6-1-5”, where “1” is the reference. There is a loss of six data points at the beginning of the time series and five at end of the time series.

2.4. Climate Indices

The filter \(\mathcal{F} \) is applied to a time series \(G \) to create a “low frequency” index \(N_\ell \),
\[
N_\ell(G) = \mathcal{F}(G) - \text{average } \mathcal{F}(G),
\]
where the average is over a range of \(G \) (1981-2010 in this paper) and a “high frequency” index
\[
N_H(G) = G - \mathcal{F}(G) \tag{3}
\]
Equation (2) been applied to SST3.4 data by Douglass [1] to define a new El Niño/La Niña index \(N_\ell(SST3.4) \). This is shown in Figure 1(b). Application of Equation (3) to SST3.4 creates \(N_H(SST3.4) \), which contains the seasonal signal. \(N_H(SST3.4) \) is plotted in Figure 1(c) (black).

The variously defined quantities are listed in Table 1.

Table 1. Definitions of various quantities.

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G)</td>
<td>A geophysical time series that contains a signal (N) of interest plus a seasonal signal of known period.</td>
</tr>
<tr>
<td>Filter (\mathcal{F})</td>
<td>(n)-month symmetric moving average “box” digital filter. (n = 12) for SST3.4</td>
</tr>
<tr>
<td>(N_\ell(G))</td>
<td>(N_\ell = \mathcal{F}(G) - \text{average } \mathcal{F}(G))</td>
</tr>
<tr>
<td>(N_H(G))</td>
<td>(N_H = G - \mathcal{F}(G))</td>
</tr>
<tr>
<td>(A_H)</td>
<td>(A_H = 2^{1/2} \text{RMS}(N_H))</td>
</tr>
<tr>
<td>Region 3.4</td>
<td>Area in central Equatorial Pacific [5S to 5N; 120W to 170W]</td>
</tr>
<tr>
<td>SST3.4</td>
<td>Monthly values of the average Sea Surface Temperature (SST) over region 3.4.</td>
</tr>
<tr>
<td>Climatology</td>
<td>For monthly data the Climatology (C) is a set of 12 constant numbers that are an average of (G) for each month over a fixed period (usually 30 years).</td>
</tr>
<tr>
<td>(Nino3.4)</td>
<td>The commonly used index of anomalies that is defined as SST3.4 minus (C)</td>
</tr>
</tbody>
</table>

Chaotic Properties of a Dynamic System

<table>
<thead>
<tr>
<th>Lyapunov exponents</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one exponent > 0.</td>
<td></td>
</tr>
<tr>
<td>Sum of exponents < 0.</td>
<td></td>
</tr>
<tr>
<td>At least one exponent > 0.</td>
<td></td>
</tr>
<tr>
<td>Sum of exponents > 0.</td>
<td>Sum < 0 means dissipative dynamics.</td>
</tr>
<tr>
<td>The signal is “well-defined”.</td>
<td></td>
</tr>
<tr>
<td>The signal is “ill-defined”.</td>
<td></td>
</tr>
</tbody>
</table>
and \(r(t) \) is the commonly used delayed Pearson autocorrelation function. When \(t = 0 \), \(\text{covar}(0) = \text{var}(x) \). For later reference it is noted that if \(x \) is a random variable, there is very little covariance after \(t = 0 \).

3. Analysis

The average, variance and trend of various time series from \(\text{SST}3.4 \) were calculated and are listed in Table 2(a). Also listed are the magnitudes of the El Niños of 1982-1983 and 1997-1998 according to several different indices.

Index \(N_t \) was computed for \(\text{SST}3.4 \) and is shown in Figure 1(b). The seasonal signal \(N_t(\text{SST}3.4) \) and its amplitude \(A_t(\text{SST}3.4) \) are shown in Figure 1(c). Of particular interest is the covariance of \(N_t(\text{SST}3.4) \) vs. lag \(t \) shown in Figure 1(d). For large lags, the covariance of \(N_t \) (\(\text{SST}3.4 \)) shows periodic behavior at a period of 1 year of amplitude 0.20 \(C^2 \) which indicates a sustained oscillation almost certainly of solar origin. Computation of the average value for each month of \(N_t \) (\(\text{SST}3.4 \)) shows that the maximum (0.75 \(C \)) occurs during Apr/May and that a broad minimum (−0.43 \(C \)) occurs during Dec/Jan. The covariance of \(N_t(\text{SST}3.4) \) at \(t = 0 \) is the variance whose value is 0.326 \(C^2 \). Since the variance of

Table 2. (a) Statistical and other properties of \(\text{SST}3.4 \) and \(\text{Niño}3.4 \); (b) Variances.

<table>
<thead>
<tr>
<th>Statistical and other properties</th>
<th>(\text{SST}3.4)</th>
<th>(\text{Niño}3.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (C) ((1950-2010))</td>
<td>0.269</td>
<td>0.000</td>
</tr>
<tr>
<td>Variance (C)(^2) ((1950-2010))</td>
<td>0.964</td>
<td>0.458</td>
</tr>
<tr>
<td>Slope (C/decade) ((1950-2010))</td>
<td>0.043</td>
<td>0.045</td>
</tr>
<tr>
<td>Amplitude El Niño of 1982-1983 (C)</td>
<td>1.78</td>
<td>2.79</td>
</tr>
<tr>
<td>Amplitude El Niño of 1997-1998 (C)</td>
<td>1.98</td>
<td>2.69</td>
</tr>
</tbody>
</table>

Note A. These two values are very close. The 12 climatology values used to calculate \(\text{Niño}3.4 \) are: 26.6, 26.7, 27.2, 27.8, 27.9, 27.7, 27.2, 26.8, 26.7, 26.7, 26.7, and 26.6 (C).

(b)

<table>
<thead>
<tr>
<th>Comparison of variances (C)(^2)</th>
<th>(\text{SST}3.4)</th>
<th>(\text{Niño}3.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td>0.964</td>
<td>0.759</td>
</tr>
<tr>
<td>(N_t)</td>
<td>0.326</td>
<td>0.624</td>
</tr>
<tr>
<td>(N_t) random*</td>
<td>≈ 0.13</td>
<td>≈ 0.43</td>
</tr>
<tr>
<td>(N_t) coherent*</td>
<td>≈ 0.20</td>
<td>≈ 0.19</td>
</tr>
</tbody>
</table>

The same calculations were carried out on index \(\text{Niño}3.4 \) and are shown in Figures 2(a-d). What is the effect of using the climatology to produce index \(\text{Niño}3.4 \)? The variance of \(\text{Niño}3.4 \) is 0.749 \(C^2 \) which is less than the 0.964 \(C^2 \) value of \(\text{SST}3.4 \). However, the variance of the seasonal signal, \(N_t(\text{Niño}3.4) \), is 0.624 \(C^2 \). Thus, not only is the variance of the seasonal signal not reduced by the climatology method but it is now nearly twice in magnitude! This “not removed” seasonal signal consists of two components whose variances are: a coherent signal at a period of 1 year (variance = 0.19 \(C^2 \)) and a random signal (variance = 0.43 \(C^2 \)). The climatology method has increased the random component of the seasonal signal while keeping the coherent component nearly the same. In sum, the climatology method does not remove the seasonal signal from \(\text{SST}3.4 \).

4. Discussion

4.1. Separation of the Seasonal Signal

One of the main conclusions of this study is that the “season free” index \(\text{Niño}3.4 \) contains a substantial component of a seasonal signal. Thus the climatology method fails. Furthermore, no set of climatology values will remove the seasonal signal from \(\text{SST}3.4 \). This is because the climatology is a function consisting of a constant plus a periodic function with monthly amplitudes that are the same for each year while the seasonal signal \(N_t \) calculated from the \(\text{SST}3.4 \) data (See Figure 1(c)) is also a periodic function the amplitude is not a constant. Thus, the climatology method subtracts an incorrect periodic signal from the parent \(\text{SST}3.4 \) signal and has produced a different seasonal signal that is larger than it was before.

Somewhat miraculously, the filter \(\mathcal{F} \) applied to \(\text{Niño}3.4 \) will remove both the incorrect seasonal function introduced by the climatology method and the original seasonal signal. So \(N_t(\text{Niño}3.4) \approx N_t(\text{SST}3.4) \), which agrees with the observation of Douglass [1].

It is important to know the extent to which \(\text{Niño}3.4 \) is “contaminated” by a seasonal signal because this index is widely used. For example, the United States National
Oceanic and Atmospheric Administration and 26 nations of the world officially use \textit{Nino3.4} for monitoring and predicting El Niño and La Niña conditions [6]. This study shows that the \textit{Nino3.4} estimates of the magnitude of El Niños are larger than estimates from \textit{N}_{I}(SST3.4) in agreement with Douglass [1]. For example, the magnitudes for the 1997-1998 El Niño listed in Table 2(a) are 2.69°C and 1.98°C respectively. More importantly, the relative magnitudes are also different. Index \textit{N}_{I}(SST3.4) shows that the magnitude of the El Niño of 1997-1998 is larger than the magnitude of the El Niño of 1983-1984 in agreement with the ordering by the National Climate Data Center [7]. The relative magnitudes from index \textit{Nino3.4} shows the opposite ordering.

4.2. A New Measure for Determining the Presence of a Seasonal Component.

In a dynamic system of \(d\) degrees of freedom perturbations grow or decay as \(e^{\lambda t}\), where \(t\) is the time and \(\Lambda_{LYP}\) is the Lyapunov exponent—one for each \(d\) [8]. Positive exponents indicate growth while negative exponents indicate decay. The volume in \(d\)-space of the perturbation grows or decays as the sum \(S\) of the exponents. For systems of finite energy with dissipation the volume must decay, which requires that \(S\) be negative. If \(S\) is positive, then the finite energy condition or the dissipation condition on the system are not satisfied.

The Lyapunov exponents can be calculated using the methods of chaos theory developed by the nonlinear dynamics community. Abarbanel’s book [8] is unique in that it is a “tool kit” on how the chaotic properties can be readily determined from the study of an appropriate scalar time series from that system. A set of programs to calculate \(d\) and the \(I\)’s is available from Randle Inc. [9] or from Abarbanel. An outline of the steps from the “tool kit” is now given.

One starts with the premise that the physical dynamical system is nonlinear and chaotic. If the system is not chaotic, then that will be known if none of the Lyapunov exponents are positive. The first step is selecting a scalar time series from the physical dynamical system (e.g. SST3.4). If the time series contains “noise” then it must be separated by some method such as with a moving average filter. For the case of the SST3.4 the “noise” is the seasonal signal. Next, one determines \(d\) and the Lyapunov exponents. For the index time series considered in this paper, \(d = 3\). The properties of the underlying dynamic system are determined from the set of exponents.

1) By definition, the system is chaotic if one of the \(I\)’s is positive.

2) Since physical systems of finite energy are dissipative, the sum \(S\) of the exponents must be negative. Such a system will be called well-defined.

3) A system having time series with a positive \(S\) will be called ill-defined. Empirically, it is found that this case corresponds to the presence of a seasonal signal.

It is postulated that:

\begin{itemize}
 \item If \(S\) is negative, the index is season free.
 \item If \(S\) is positive, the index contains a seasonal signal.
\end{itemize}

The Abarbanel chaos analysis was applied to the SST3.4, \(N_{L}, N_{H}, \text{Niño3.4}\), and \(N_{I}(\text{Niño3.4})\) time series. The first outcome is that for all time series the dimension \(d\) is 3. The Lyapunov exponents and their sum \(S\) are listed in Table 3. In addition, at least one of the Lyapunov exponents is positive, thus verifying the presumption that these time series come from processes that are nonlinear and chaotic. This will be explored in a later publication. The issue of the sum \(S\) of exponents is illustrated in Figure 3. The \(S\) for the fundamental time series SST3.4 is 0.385. This is positive and thus SST3.4 is ill-defined (by hypothesis because of the seasonal signal). The new El Niño/La Niña index, \(N_{I}(SST3.4)\) has \(S = -0.119\), which is negative and thus well-defined. For \(N\text{ino3.4}\) (the index derived by subtracting the climatology from SST3.4) the \(S\) is +0.198 which has been somewhat reduced from that of SST3.4 but is still positive and thus

\begin{table}[h]
\centering
\caption{Lyapunov exponents.}
\begin{tabular}{cccccc}
\hline
Lyapunov & SST3.4 & \(N_{L}\) & \(N_{H}\) & \(N\text{ino3.4}\) & \(S(N\text{ino3.4})\) \\
\hline
\(\lambda_{1}\) & 0.587 & 0.243 & 0.781 & 0.560 & 0.315 \\
\(\lambda_{2}\) & 0.220 & 0.031[zero] & 0.356 & 0.241 & 0.051 [zero] \\
\(\lambda_{3}\) & -0.422 & -0.393 & -0.327 & -0.503 & -0.446 \\
Sum & 0.385 & -0.119 & 0.814 & 0.198 & -0.080 \\
\hline
\end{tabular}
\end{table}

Note A: Sum of exponents < 0. The time series is well-defined. Sum of exponents < 0 means dissipative. If, in addition, one of the exponents = 0, then the dynamics can be described by ordinary differential equations. Note B: Sum of exponents > 0. The time series is ill-defined due to a lack of separation of the seasonal effect.
Figure 3: Schematic showing the sum of Lyapunov exponents of various indices derived from Region3.4. From the chaos test that the sum of the Lyapunov exponents must be negative one finds that only $N_L(SST3.4)$ and $N_L(Nino3.4)$ are well-defined. Numbers in parentheses are the variances from Table 1. Arrows labeled with F indicates a process that used the 12-month digital filter.

ill-defined; by hypothesis, the seasonal signal has not been completely separated. However, $N_L(Nino3.4)$ (applying filter F to $Nino3.4$) has a S of -0.080 indicating that this index is well-defined.

5. Summary and Conclusions

The commonly used climatology method of subtracting constant seasonal values of $SST3.4$ to produce the widely used El Niño/La Niña index $Nino3.4$ is shown to fail because this index still contains a substantial seasonal signal. Furthermore, no set of constant seasonal values will remove the seasonal signal because the seasonal values are not constant.

A different scheme is given that does not use the climatology method. Using a moving average filter F one can create a signal N_f that contains the low frequency effect of interest, such as the El Niño/La Niña phenomenon, and a high frequency signal N_H that contains the seasonal signal. Various tests including one based upon chaos properties show that N_f is “seasonal free”.

These results are applicable to other geophysical measurements.

6. Acknowledgements

Many helpful discussions were held with H. D. I. Arbarbanel and R. S. Knox.

7. References

