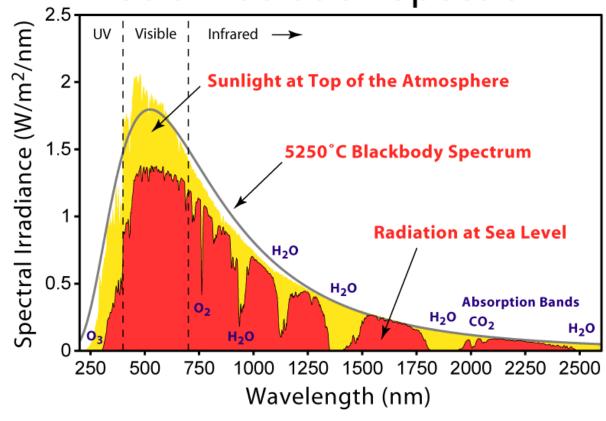
AST 453

- ☐ Some more basics on determining physical parameters of stars
- ☐ Photometry
- ☐ Luminosities
- ☐ Binaries, and relations between mass, radius, temperature for normal stars

Solar Radiation Spectrum



Astrophysically Useful Numbers

For fundamental physical constants, see NIST CODATA page:

http://physics.nist.gov/cuu/Constants/index.html

Constants for Sun:

http://www.pas.rochester.edu/~emamajek/sun.txt

Solar radius R_{\odot} = 695,660 km Solar Mass M_{\odot} = 1.989e30 kg

Solar Luminosity L_{\odot} = 3.827e33 erg/s = 3.827e26 W

Solar Effective Temperature T_{eff} = 5,772 K

Astronomical Unit = 149,597,870,700 m

Jupiter radius $R_J = 71,492 \text{ km}$ Jupiter mass $M_J = 1.8986e27 \text{ kg}$

Earth radius $R_E = 6.378 \text{ km}$ Earth mass $M_E = 5.9736e24 \text{ kg}$

A perusal of the astrophysics literature shows a mix of units:

SI, cgs, solar units, eV, Angstroms. Get used to converting units!

Apparent magnitudes: stellar photometry

$$m - m_0 = -2.5 \log_{10}(f/f_0)$$

 $m = -2.5 \log_{10}(f) + zeropoint$

f = observed flux, m = magnitude

Usually this measured at some effective wavelength λ and measured with respect to some reference object (the star Vega has often been used).

Units of flux "f" are usually either quoted in either erg/s/cm²/Angstrom erg/s/cm²/ μ m erg/s/cm²/ μ z | Units of flux "f" are usually either quoted in either erg/s/cm²/ μ m erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux "f" are usually either quoted in either erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux "f" are usually either quoted in either erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux "f" are usually either quoted in either erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux "f" are usually either quoted in either erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux "f" are usually either quoted in either erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux "f" are usually either quoted in either erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux | Erg/s/cm²/ μ m | Erg/s/cm²/ μ m | Units of flux |

http://www.astro.utoronto.ca/~patton/astro/mags.html

Absolute Magnitudes

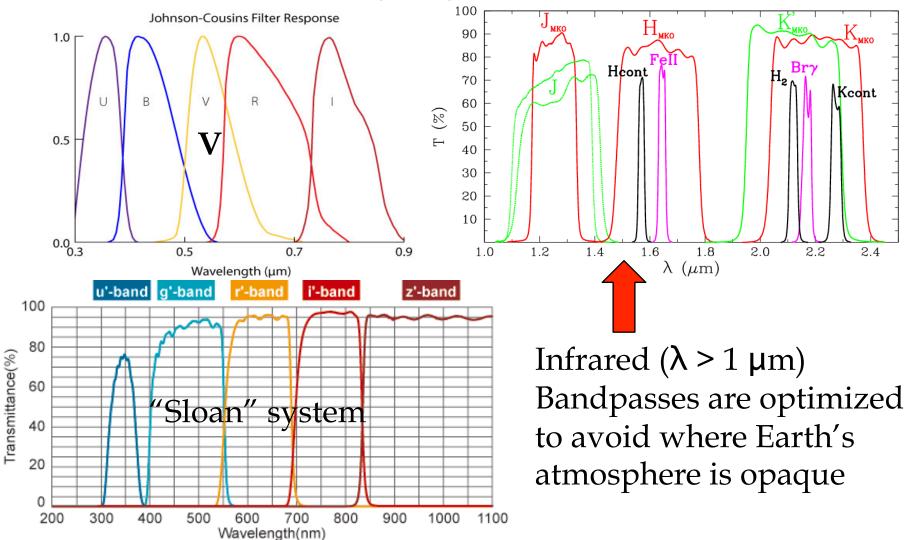
Absolute magnitude M is the star's brightness at 10 pc **Distance modulus** (m – M) = -2.5 log((L/d²)/(L/(10pc)²)) = 5log(d_{pc}) – 5 For Sun at "V" band (λ =0.55 μ m), m_V= -26.75, M_V= 4.82

On this system $m_V(Vega) = 0.03$ (don't ask why not zero...)

Example: Vega has apparent V-band mag: $m_V(Vega) = 0.03$ And parallax $\mathbf{w} = 0.129$ arcsec => Distance = $1/\mathbf{w} = 7.75$ pc so absolute magnitude of Vega in V-band is: $M_V = 0.58$

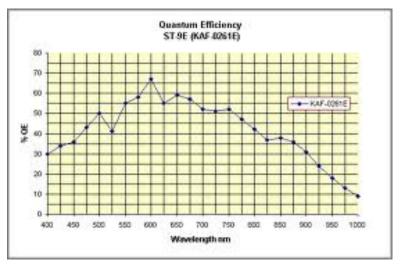
Databases on magnitudes, parallaxes (distances) for stars: <u>SIMBAD</u>, <u>VizieR</u>, <u>NStED</u>

Filters for measuring brightnesses at various λ



e.g. http://www.asahi-spectra.com/opticalfilters/astronomical_filter.html

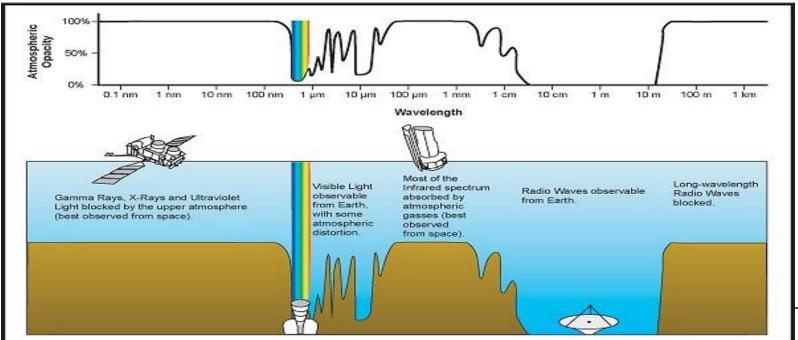
Other transmission profiles to keep in mind



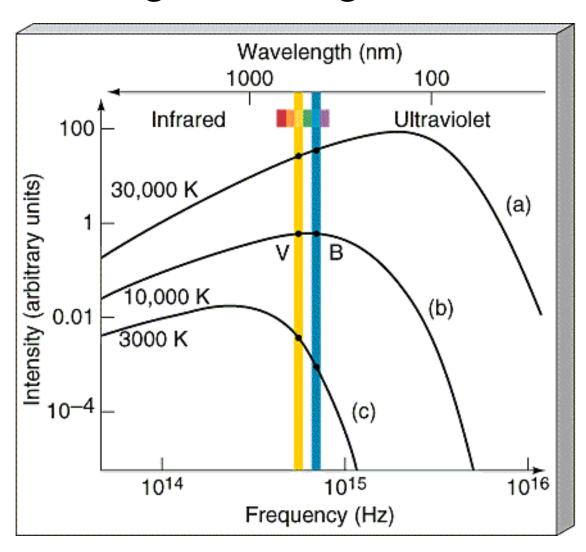
Typical CCD QE curve

Santa Barbara Instrument Group

Earth's atmospheric "windows"



Brightness/magnitude at two λ s => Colors



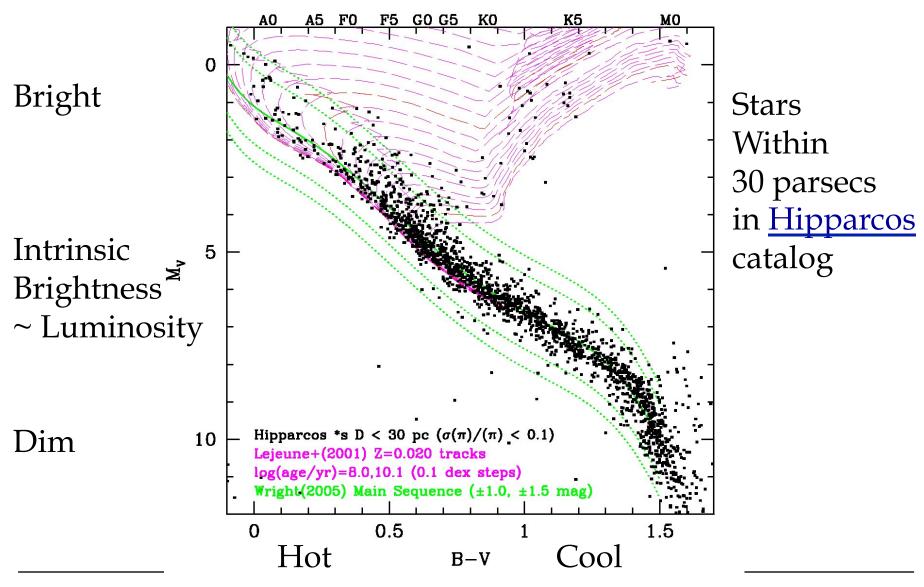
$$m_B - m_V = B - V$$

= -2.5 log(f_B/f_V)

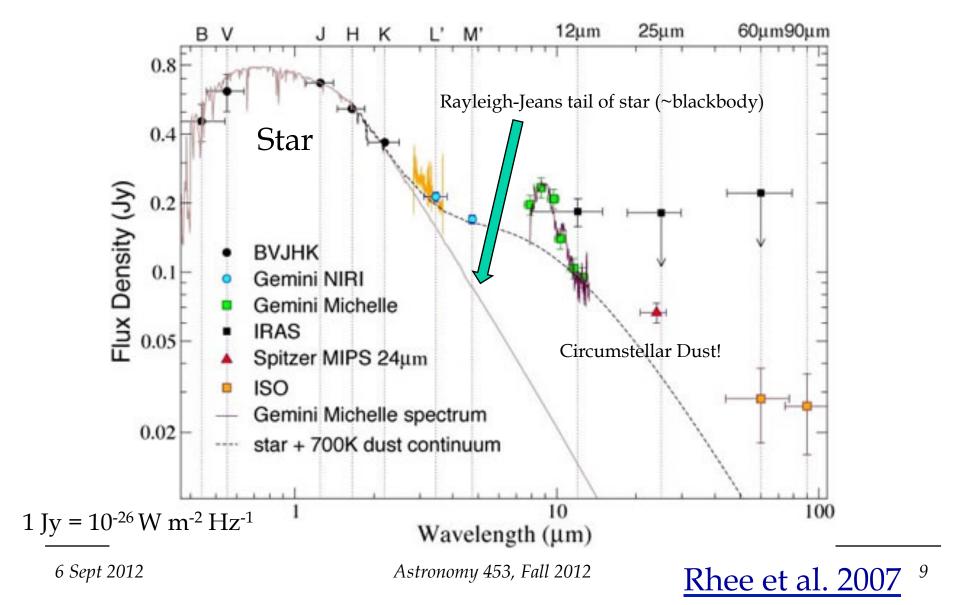
Where B-V = 0.00 mag
For Vega
$$(T_{eff} \sim 9500 \text{ K})$$

B-V(Sun,
$$T_{eff} = 5778K$$
)
= 0.65 mag
B-V($T_{eff} = 30000K$)
= -0.32 mag
B-V($T_{eff} = 3000K$)
= 1.8 mag

Combining colors and absolute magnitudes => HR diagram



How do we calculate <u>luminosity</u> with magnitudes (at some λ) and distances?



How do we calculate <u>luminosity</u> with magnitudes (at some λ) and distances?

We can work with "bolometric magnitudes" (m_{bol}) – i.e. accounting for a star's light at (ostenisbly) all wavelengths.

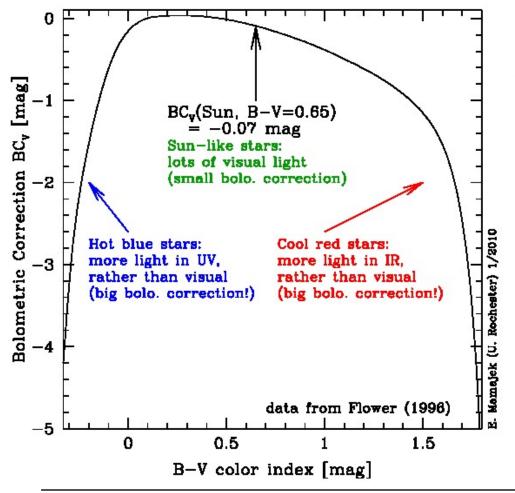
 $m_{bol} = m_V$ (V-band magnitude) + BC ("bolometric correction")

The "BC" accounts for the light not being emitted in the band whose magnitude you've measured (in this case all the light blueward and redward of the V-band ~0.55µm filter).

Absolute bolometric magnitude: $M_{bol} = m_{bol} - 5log(d_{pc}) + 5$ $m_V(Sun) = -26.74$; $M_{bol}(Sun) = 4.75$ mag (by convention) $M_V(Sun) = 4.83$; $BC_V(Sun) = -0.08$ mag

Bolometric corrections (getting luminosities from magnitude at one band!)

Bolometric correction at V-band for main sequence stars



Shape of spectrum, and this correction factor, can be determined if one knows the color of the star (difference between apparent magnitudes at two λ s).

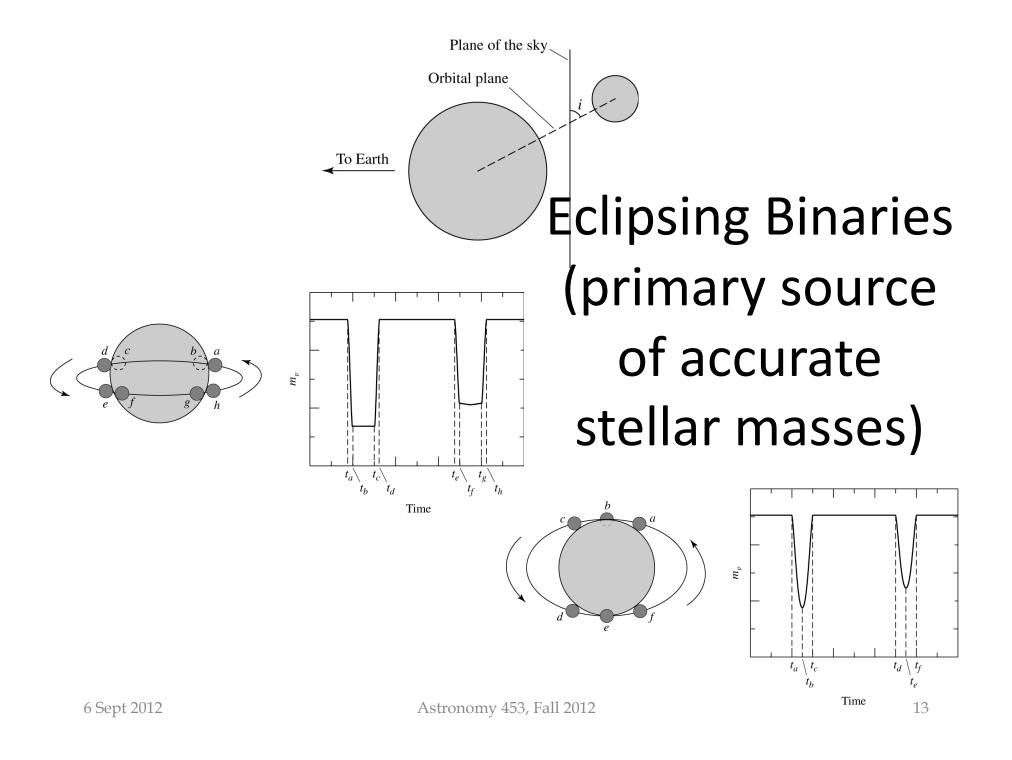
A scaling factor for flux is the same as an offset in magnitude. This offset is called the bolometric correction, *BC*, and is determined **empirically** from observed stellar spectra.

$$m_{bol} = m_V + BC$$
 $B - V = m_B - m_V$

Luminosity... finally!

Log₁₀(L/L_{sun}) = -0.4(M_{bol} - M_{bol}(Sun)) = -0.4M_{bol} + 1.90 Where L_{sun} = 3.827×10^{33} erg/s = 3.827×10^{26} W Origin: spacecraft measurements measure "solar constant" to be 1361 W/m^2 at 1 AU distance from Sun: and L = f * $4\pi R^2$

Stefan-Boltzmann law: surface flux = f_{bol} = σT_{eff}^4 σ = Stefan-Boltzmann Constant = 5.67 x 10⁻⁵ erg/cm²/s/K⁴ Luminosity L = $4\pi R^2$ (σT^4) Sun's radius is opaque to radiation at R_{sun} = 695, 600 km We define the star's **effective temperature** T_{eff} to be the temperature of a blackbody that would emit the same luminosity (power) as a star of a given radius

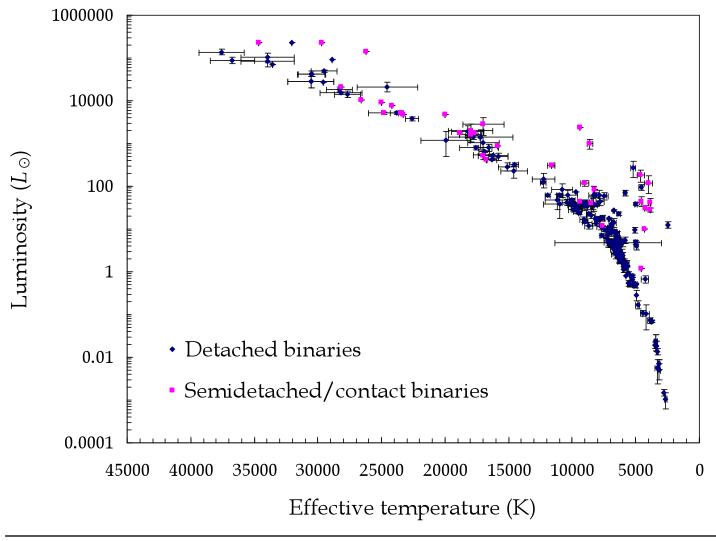


Binaries from which one gets useful mass measurements

Most normal stars turn out to be members of binary systems.

- Resolved <u>visual binaries</u>: see stars separately, measure orbital axes and speeds directly. Few demonstrate "useful" orbital motion (i.e. period $\sim \tau_{\text{human}}$)
- ☐ Astrometric binaries: only brighter member seen, with periodic wobble in the track of its proper motion.
- □ <u>Spectroscopic binaries</u>: unresolved (relatively close) binaries told apart by periodically oscillating Doppler shifts in spectral lines. Periods = days to years.
 - Spectrum binaries: orbital periods longer than period of known observations.
 - Eclipsing binaries: orbits seen nearly edge on, so that the stars actually eclipse one another. (Most useful.)

Luminosity-temperature relation for binary stars (mostly eclipsing) with well-determined orbits



Compiled by Oleg Malkov (1993),based mostly on work over many decades by Dan Popper.

Stellar masses determined for binary systems

☐ If orbital major axes (relative to center of mass) or radial velocity amplitudes are known, so is the ratio of masses:

$$\frac{m_1}{m_2} = \frac{a_2}{a_1} = \frac{v_{2r}}{v_{1r}}$$

☐ If the period, P, and the sum of major axis lengths, $a = a_1 + a_2$, are known, Kepler's third law can give masses separately:

$$P = \frac{4\pi^2}{G(m_1 + m_2)} a^3$$

Stellar masses determined for binary systems

☐ If only radial velocities are known, the sum of masses (from Kepler's third law) is:

$$m_1 + m_2 = \frac{P}{2\pi G} \left(\frac{v_{1r} + v_{2r}}{\sin i} \right)^3$$

☐ If orientation angle of orbit, *i*, is known, this allows separate determination of the masses; that's why eclipsing binaries are so important (sin *i* must be close to unity in such cases).

Other uses for totally-eclipsing binary systems

Duration of eclipses and shape of light curve can be used to determine **radii** of stars:

$$R_{s} = \frac{v_{1} + v_{2}}{2} (t_{2} - t_{1})$$

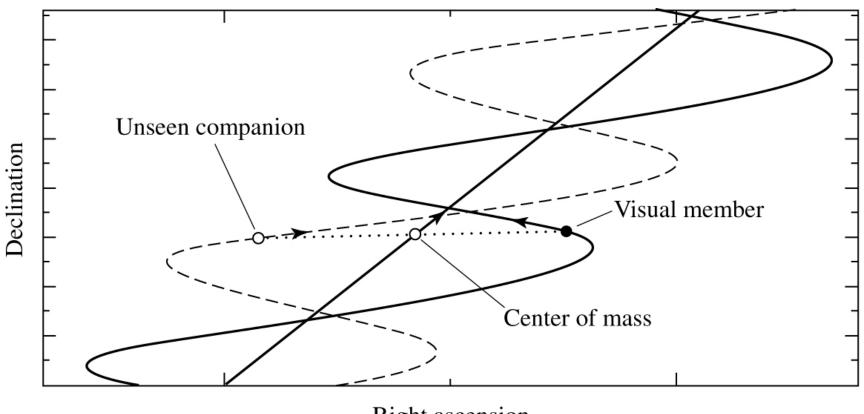
$$R_{\ell} = \frac{v_{1} + v_{2}}{2} (t_{3} - t_{1})$$

$$Time$$

Relative depth of primary (deepest) and secondary brightness minima of eclipses can be used to determine the **ratio of effective temperatures of the stars**:

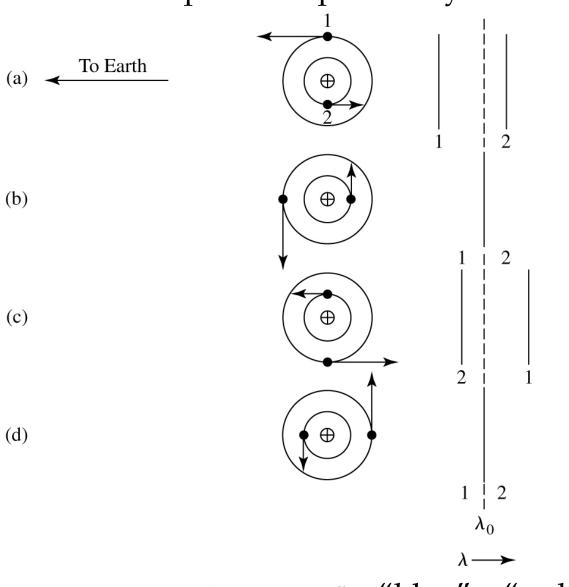
$$\frac{F_0 - F_{\text{primary}}}{F_0 - F_{\text{secondary}}} = \left(\frac{T_{e,s}}{T_{e,\ell}}\right)^4.$$

Astrometric Binary

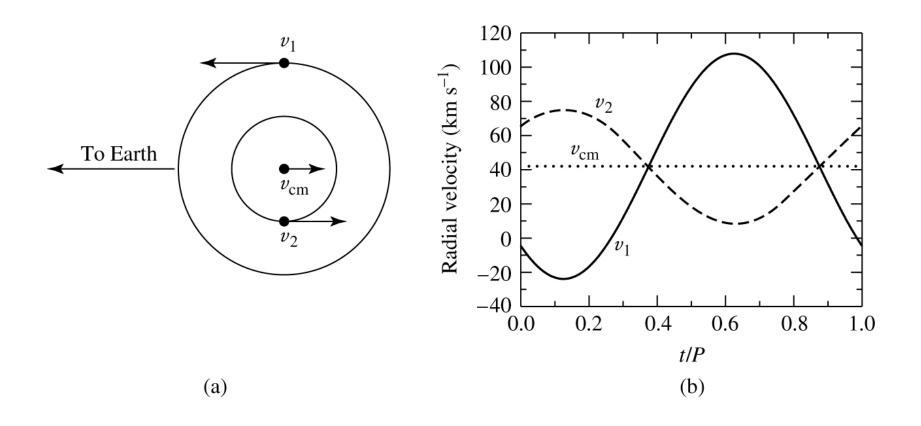


Right ascension

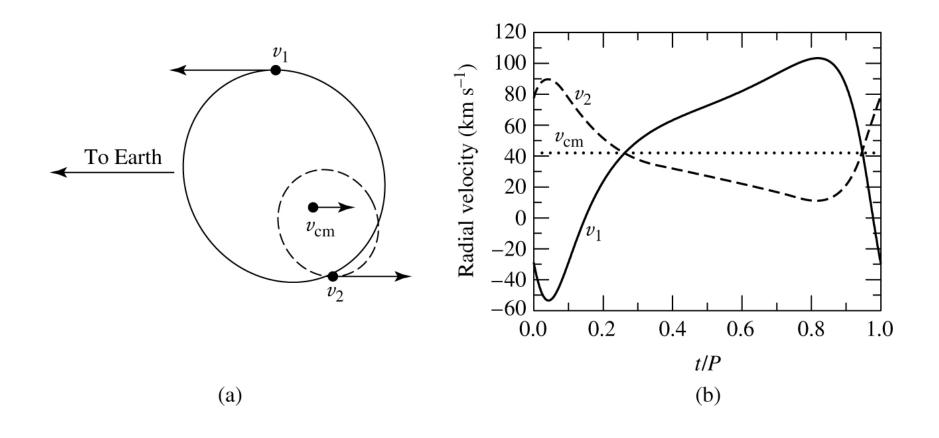
Spectroscopic Binary



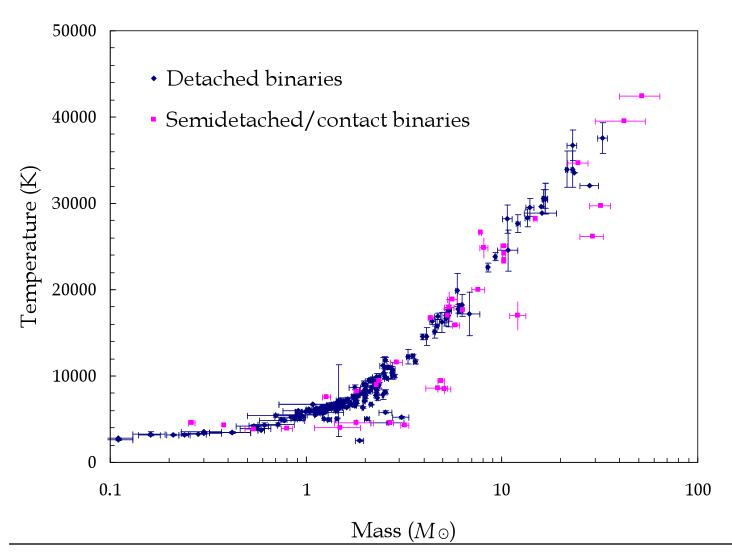
Radial Velocity vs. Time for Double-lined SB in Circular Orbit



Radial Velocity vs. Time for Double-lined SB in Elliptical orbit (e=0.4)

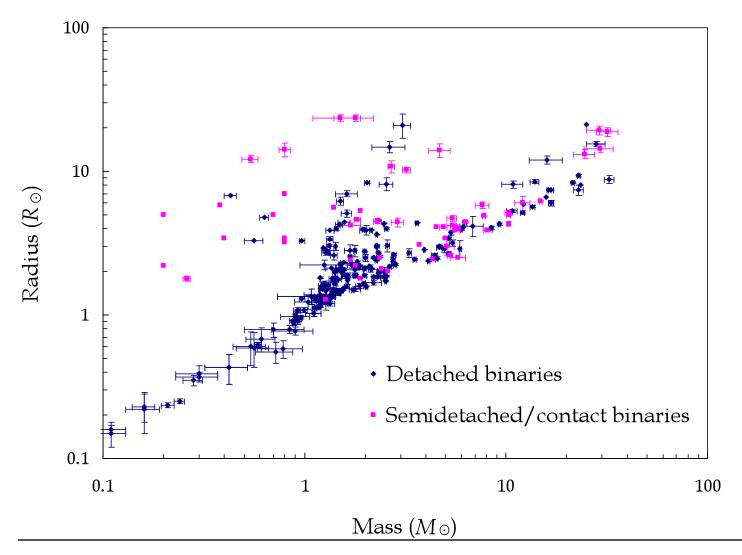


Temperature-mass relation for binary stars with well-determined orbits



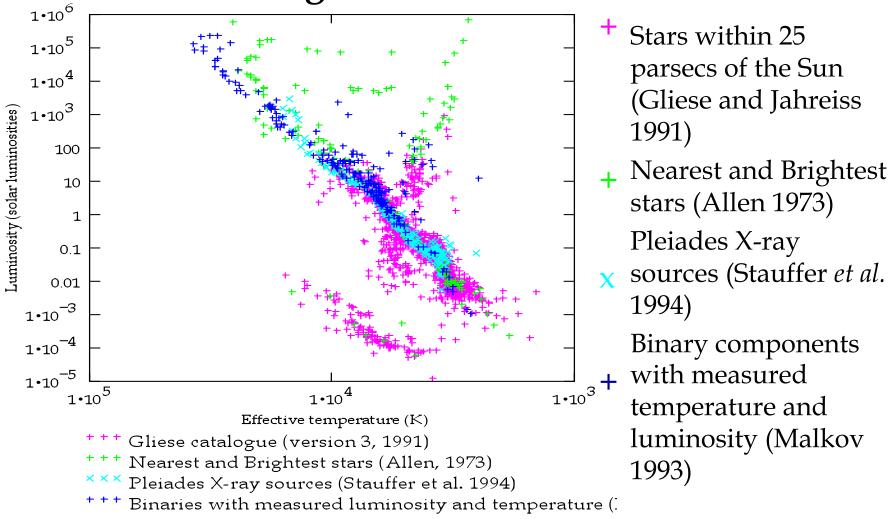
Compiled by Malkov (1993), based mostly on work over many decades by Popper.

Radius-mass relation for binary stars with welldetermined orbits



Compiled by Malkov (1993), based mostly on work over many decades by Popper.

Why do we think these results apply to stars in general? Well ...



Mass-Luminosity Relation

(our stellar models need to reproduce this!)

