M6V Kirkpatrick(in GrayCorbally09) call Gl 406 (= Wolf 359) the primary M6V standard. There are some remarkable wide ranges of colors seen among stars where there are multiple published M6 classifications, e.g. V-Ks, Bp-Rp, G-V. Boeshaar76 standard: GJ 406 (=Wolf 359) - M6e (plate III standard) Boeshaar76 standard: GJ 65AB - M6-e (plate IV standard) Turnshek85 standard: GJ 406 (=Wolf 359) - dM6e Boeshaar85 standard: GJ 4037 (=LHS 3339) - dM6 (in text, not Table II) Kirkpatrick91 standards: GJ 1245B - M6V (pri. stan.) GJ 65B - M6V (pri. stan.) GJ 406 (=Wolf 359) - M6V (pri. stan.) LHS 5142 - M6V (sec. stan.) Kirkpatrick97 standard: GJ 406 (=Wolf 359) - M6V Hawley02 standard: 2MASS J0435+1537 - M6V Henry02 standards: GJ 65B - M6V GJ 283B - M6V GJ 406 (=Wolf 359) - M6V GJ 1245B - M6V Henry04 standard: GJ 406 (=Wolf 359) - M6.0V (pri. stan.) Kirkpatrick(GrayCorbally09): Gl 406 (=Wolf 359) - M6V (pri. stan.) Kirkpatrick10 standard: GJ 3146 (LHS 1375) - M6V (opt.,near-IR stan.) Pecaut13 standard: GJ 406 (=Wolf 359) - M6V Newton14 standard: GJ 406 - M6V Kirkpatrick16 standard: GJ 406 (=Wolf 359) - M6V RECONS shows GJ 406 (=Wolf 359; J1056+0700) as the nearest M6V star, followed by GJ 65B (J0139-1757), & GJ 1245B (J1953+4424). (M6V) = 1.64 ; Fitzgerald70 (M6V) = 1.72 ; Johnson66 (B-V)(M6V) = 1.73 ; SchmidtKaler82 (B-V)(M6V) = 1.83 ; sec. stan. GJ 283B (B-V)(M6V) = 1.95 ; Leggett92 "young disk" (B-V)(M6V) = 1.98 ; sec. stan. GJ 1245B (B-V)(M6V) = 1.98 ; ter. stan. GJ 3146 (B-V)(M6V) = 1.99 ; prim. stan. GJ 406 (Kilkenny98) (M6V) = 2.0+ ; Bessell79 (B-V)(M6V) = 2.01 ; linear fit to Leggett92 (B-V=0.8367+0.2852*V-I, V-I=4.1) (B-V)(M6V) = 2.034 +- 0.0069 ; prim. stan. GJ 406 (Landolt09) (B-V)(M6V) = 2.06 ; Bessell91 "old disk" => adopt (B-V)(M6V) = 2.01 [updated 7/5/2020] (M6V) = 1.27 ; Johnson66 (U-B)(M6V) = 1.26 ; U-B vs. B-V trend from Landolt09 for B-V=2.00 (very few points) (U-B)(M6V) = 1.165+-0.0346 ; pri. stan. GJ 406; Landolt09 => adopt (U-B)(M6V) = 1.3 (V-Rc)(M6V) = 1.823 +- 0.0073 ; pri. stan. GJ 406 (Landolt09) (V-Rc)(M6V) = 1.91 ; Bessell91 "old disk" (M6V) = 1.93 ; Johnson66 (V-Rc)(M6V) = 1.95 ; adopting V-I=4.10, R-I=2.15 (see below) (V-Rc)(M6V) = 2.25 ; non-standard LHS 2026 => adopt (V-Rc) = 1.95 (V-Ic)(M6V) = 4.62 ; non-standard LHS 2026 (V-Ic)(M6V) = 4.45 ; non-standard LHS 2471 (V-Ic)(M6V) = 4.22 ; non-standard LHS 1604 (V-Ic)(M6V) = 4.20 ; exemplar LHS 2314 (V-Ic)(M6V) = 4.14 ; non-standard GJ 316.1 (V-Ic)(M6V) = 4.13 ; Bessell91 "old disk" (V-Ic)(M6V) = 4.11 ; sec. stan. GJ 283B (V-Ic)(M6V) = 4.000 +- 0.0062 ; pri. stan. GJ 406 (Landolt09) (V-Ic)(M6V) = 4.0 ; Hawley96 (M6V) = 3.76 ; Johnson66 (V-Ic)(M6V) = 3.75 ; Leggett92 "young disk" (V-Ic)(M6V) = 3.740 ; sec. stan. GJ 1245B (M6V) = 3.58 ; Bessell79 => adopt (V-Ic)(M6V) = 4.10 [updated 7/4/2020] => adopt (I-Ks)(M6V) = 7.10 - 4.10 = 3.00 (R-I)(M6V) = 2.152 ; N=4 M6Vs in Liebert06 (+-0.045 sem, +-0.090 rms) (R-I)(M6V) = 2.161 ; trend for V-Ks=7.10 (R-I)(M6V) = 2.174 +-0.0025 ; pri. stan. GJ 406 (Landolt09) (M6V) = 2.18 ; Bessell79 M(R-I)(M6V) = 2.22 ; Bessell91 "old disk" => adopt (V-Rc)(M6V) = 2.16 (G-J)(M6V) = 3.232 ; Bentley18 (G-Ks)(M6V) = 4.132 ; Bentley18 (Ks-W2)(M6V) = 0.397 ; Bentley18 (W1-W2)(M6V) = 0.205 ; Bentley18 (Ks-W1)(M6V) = 0.192 ; Bentley18 (Ks-W1)(M6V) = 0.195 ; Best18 (Ks-W1)(M6V) = 0.224 ; Dupuy12 trend (N=15, d<50pc) (Ks-W1)(M6V) = 0.226 ; Avenhaus12 for V-Ks=7.10 (Ks-W1)(M6V) = 0.230 ; fit to Winters15 data for V-Ks=7.10 (Ks-W1)(M6V) = 0.248 ; pri. stan. GJ406/allWISE (Ks-W1)(M6V) = 0.277 ; pri. stan. GJ406/WISE => adopt (Ks-W1)(M6V) = 0.225 [updated 12/29/2019] (M6V) = 4.63 ; Johnson66 (M6V) = 6.204 +-0.167 (sem) (stdev = 0.334) (N=4 stans) (M6V) = 5.58 ; Johnson66 (V-Ks)(M6V) = 6.54 ; exemplar LSPM J0011+5908 (V-Ks)(M6V) = 6.603 ; sec. stan. GJ 1245B (M6V) = 6.65 ; Beuermann06 (V-K_CIT)(M6V) = 6.65 ; Leggett92 "young disk" (V-Ks)(M6V) = 6.809 ; ter. stan. GJ 3146 (V-Ks)(M6V) = 6.88 ; trend fit to Dahn17 for M6V (V-Ks)(M6V) = 6.90 ; exemplar SCR J0630-7643 AB (V-K)(M6V) = 7.0 ; Hawley96 (V-Ks)(M6V) = 7.259 ; ter. stan. GJ 283B (V-Ks)(M6V) = 7.34 ; ter. stan. LHS 5142 (V-K)(M6V) = 7.37 ; Bessell91 "old disk" (V-Ks)(M6V) = 7.445 ; prim. stan. GJ 406 (V-Ks)(M6V) = 7.514 ; exemplar LHS 2314 (V-Ks)(M6V) = 7.798 ; exemplar LHS 2026 = GJ 3504 => adopt (V-Ks)(M6V) = 7.10 *** [updated 12/10/2020] [note that GJ 406 appears to be redder than the other M6V standards, but not so red compared to non-standard M6Vs. Median 7.08, mean 7.11. There is odd split in colors - half between 6.5-6.9 and 7.2-7.8. Leggett gave "young disk" colors and Bessell gave "old disk" colors.] => adopt (V-J)(M6V) = 6.154 => adopt (V-H)(M6V) = 6.754 (J-H)(M6V) = 0.648 (+-0.012 sem,+-0.033 stdev) ; N=7 M6V Cruz03 (J-H)(M6V) = 0.605 ; color-color-trend for V-K=7.30 => adopt (J-H)(M6V) = 0.605 (M6V) = 0.89 ; Beuermann06 (J-Ks)(M6V) = 0.957 ; color-color trend for V-K=7.30 (J-Ks)(M6V) = 1.028 (+-0.017 sem,+-0.036 stdev) ; N=7 M6V Cruz03 => adopt (J-Ks)(M6V) = 0.957 (M6V) = 0.33 ; Beuermann06 (H-Ks)(M6V) = 0.352 ; color-color trend for V-K=7.30 (H-Ks)(M6V) = 0.391 (+-0.013 sem,+-0.029 stdev) ; N=7 M6V Cruz03 (Ks-L')(M6V) = 0.320 ; Dupuy12 polynomial (Bp-Rp)(M6V) = 3.39 ; Kiman19 (Bp-Rp)(M6V) = 3.6899 ; G_234-45 M6V (Bp-Rp)(M6V) = 3.8302 ; LSPM J0011+5908 exemplar M6.0V (Bp-Rp)(M6V) = 3.8419 ; GJ_1245B sec. stan. (Bp-Rp)(M6V) = 3.9546 ; GJ_3146 ter. stan. (Bp-Rp)(M6V) = 3.9546 ; GJ_65B ter. stan. (Bp-Rp)(M6V) = 4.16 ; M5-M8.5V trend for M6V (Bp-Rp)(M6V) = 4.1848 ; GJ_406 = Wolf 359 pri. stan. (Bp-Rp)(M6V) = 4.3006 ; LHS 2026 exemplar (Bp-Rp)(M6V) = 4.3379 ; LHS_2314 exemplar (Bp-Rp)(M6V) = 4.3916 ; GJ_283B ter. stan. (Bp-Rp)(M6V) = 4.4215 ; LHS_2090 M6V (Bp-Rp)(M6V) = 4.4644 ; LHS_5142 ter. stan. => adopt (Bp-Rp)(M6V) = 4.18 [updated 12/15/2010] [EEM note 12/10/2020: note clumping Bp-Rp ~ 3.7-3.95, 4.3-4.5] (G-Rp)(M6V) = 1.3850 ; G_234-45 M6V (G-Rp)(M6V) = 1.4022 ; LSPM J0011+5908 exemplar (G-Rp)(M6V) = 1.4076 ; GJ_1245B sec. stan. (G-Rp)(M6V) = 1.41 ; Kiman19 (G-Rp)(M6V) = 1.4208 ; GJ_3146 ter. stan. (G-Rp)(M6V) = 1.432 ; color trend M0V-M9V (G-Rp)(M6V) = 1.453 ; GJ_406 = Wolf 359 pri. stan. (G-Rp)(M6V) = 1.4568 ; GJ_65B ter. stan. (G-Rp)(M6V) = 1.4724 ; GJ_283B ter. stan. (G-Rp)(M6V) = 1.4742 ; LHS_2026 exemplar (G-Rp)(M6V) = 1.4850 ; LHS_2090 M6V (G-Rp)(M6V) = 1.4853 ; LHS_2314 exemplar (G-Rp)(M6V) = 1.5009 ; LHS_5142 ter. stan. => adopt (G-Rp)(M6V) = 1.45 [updated 12/10/2020] => adopt (Bp-G)(M6V) = 2.73 [updated 11/18/2020; Bp-Rp=4.18, G-Rp=1.45] (Bp-G)(M6V) = 2.00 ; Kiman19 (Bp-G)(M6V) = 2.4280 ; LSPM J0011+5908 exemplar (Bp-G)(M6V) = 2.4343 ; GJ_1245B sec. stan. (Bp-G)(M6V) = 2.4978 ; GJ_65B (Bp-G)(M6V) = 2.5337 ; GJ_3146 ter. stan. (Bp-G)(M6V) = 2.73 ; Bp-Rp=4.18, G-Rp=1.45 (Bp-G)(M6V) = 2.7319 ; GJ_406 = Wolf 359 pri. stan. (Bp-G)(M6V) = 2.8264 ; LHS_2026 exemplar (Bp-G)(M6V) = 2.8526 ; LHS_2314 exemplar (Bp-G)(M6V) = 2.9192 ; GJ_283B sec. stan. (Bp-G)(M6V) = 2.9635 ; LHS_5142 ter. stan. [EEM note 12/10/2020: remarkable split in colors Bp-G~2.4-2.53, 2.82-3.0) (G-V)(M6V) = -3.062 ; LHS_2026 exemplar (G-V)(M6V) = -2.640 ; LHS_2314 exemplar (G-V)(M6V) = -2.572 ; GJ_283B sec. stan. (G-V)(M6V) = -2.384 ; LHS_5142 ter. stan. (G-V)(M6V) = -2.366 ; M6V-M6.5V linear fit G-Vvs.V-Ks(G-V=2.2157-0.645259*(V-Ks) for V-Ks=7.1) (G-V)(M6V) ~ -2.37 ; eye-ball trend to M5-M7.5 default values for V-Ks=7.10 (G-V)(M6V) = -2.248 ; polynomial fit to SIMBAD d<25pc M dwarfs (G-V)(M6V) = -2.21 ; GJ_3146 ter. stan. (G-V)(M6V) = -2.120 ; LSPM J0011+5908 exemplar (G-V)(M6V) = -2.071 ; GJ_1245B sec. stan. (G-V)(M6V) = -1.6859 ; GJ_65B => adopt (G-V)(M6V) = -2.37 [updated 12/10/2020] => adopt (G-Ks)(M6V) = 4.73 = 7.10 + -2.37 [updated 12/10/2020] (g-r)(M6V) = 1.72 ; Covey07 (r-i)(M6V) = 1.992 (+-0.05 rms) ; West05 fit for (V-Ic)=4.10 (r-i)(M6V) = 2.11 (+-0.14 rms) ; West08 (i-z)(M6V) = 1.16 (+-0.07; rms) ; West08 (i-z)(M6V) = 1.287 ; poly fit to d<75pc M dwarfs in SIMBAD for G-Ks=4.73 => adopt (i-z)(M6V) = 1.29 [updated 12/27/2021] (z-J)(M6V) = 1.71 (+-0.10 rms) ; West08 (z-J)(M6V) = 1.808 (+-0.053 rms) ; poly fit to d<50pc SIMBAD M dwarfs for G-Ks=4.73 => adopt (z-J)(M6V) = 1.81 [updated 12/27/2021] Mv(M6V) = 11.47 ; Wegner07 (clearly in error, or biased somehow!) Mv(M6V) = 13.5 ; Schmidt-Kaler82 Mv(M6V) = 15.44 ; ter. stan. GJ 65B Mv(M6V) = 15.70 ; sec. stan. GJ 1245B Mv(M6V) = 15.79 ; exemplar LSPM J0011+5908 Mv(M6V) = 16.17 ; Henry94 Mv(M6V) = 16.30 ; Finch14 calibration for V-Ks=7.10 Mv(M6V) = 16.31 ; Dieterich14 calibration for V-Ks=7.10 Mv(M6V) = 16.32 ; M_Ks=9.22, V-Ks=7.10 Mv(M6V) = 16.49 ; Kirkpatrick94 Mv(M6V) = 16.59 ; pri. stan. GJ 406 Mv(M6V) = 16.60 ; EEM fit to Reid CNS3 data for V-K=7.10) Mv(M6V) = 16.7 ; Reid04 Mv(M6V) = 16.74 ; sec. stan. GJ 283B Mv(M6V) = 16.81 ; ter. stan. LHS 5142 Mv(M6V) = 16.91 ; exemplar LHS 2314 = GJ 3624 Mv(M6V) = 17.40 ; exemplar LHS_2026 => adopt Mv(M6V) = 16.32 mag [updated 12/10/2020] (M_Ks=9.22, V-Ks=7.1) => adopt M_G(M6V) = 14.26 mag [updated 12/10/2020] (Mv=16.32, G-V=-2.37) => adopt M_Ks(M6V) = 9.22 mag [updated 12/10/2020] (Mv=16.32, V-Ks=7.10) M_G(M6V) = 12.92 ; Kiman19 M_G(M6V) = 13.5764 ; pri. stan. GJ_1245 M_G(M6V) = 13.6464 ; exemplar LSPM J0011+5908 M_G(M6V) = 13.6596 ; ter. stan. UV Ceti = GJ 65 B = G 272-61B M_G(M6V) = 13.715 ; trend SIMBAD d<10pc sample M_G(M6V) = 13.74 ; median for nearest 10 M6Vs in SIMBAD M_G(M6V) = 13.782 ; ter. stan. GJ_3146 M_G(M6V) = 13.8235 ; WOH G 618 (single M6 classification) M_G(M6V) = 13.95 ; Mv=16.32, G-V=-2.37 M_G(M6V) = 14.13 ; pri. stan. GJ406=Wolf 359 M_G(M6V) = 14.167 ; sec. stan. GJ_283B M_G(M6V) = 14.1842 ; SCR J0838-5855 (single M6 classification) M_G(M6V) = 14.3198 ; PM J17189-4131 (single M6 classification) M_G(M6V) = 14.33 ; exemplar LHS_2026 M_G(M6V) = 14.430 ; ter. stan. LHS_5142 M_Ks(M6V) = 9.10 ; sec. stan. GJ1245B M_Ks(M6V) = 9.15 ; ter. stan. GJ3146 M_Ks(M6V) = 9.16 ; pri. stan. GJ406/Wolf359 M_Ks(M6V) = 9.20 ; Finch14 calibration for V-Ks=7.10 M_Ks(M6V) = 9.21 ; Dieterich14 calibration for V-Ks=7.10 M_Ks(M6V) = 9.22 ; EEM fit to Jao16 for V-Ks=7.10 M_Ks(M6V) = 9.25 ; exemplar LSPM J0011+5908 M_Ks(M6V) = 9.31 ; Dupuy12 mean M_Ks(M6V) = 9.36 ; exemplar LHS 2314 M_Ks(M6V) = 9.388 ; Dupuy12 polynomial M_Ks(M6V) = 9.48 ; ter. stan. LHS 5142 M_Ks(M6V) = 9.48 ; ter. stan. GJ 283B M_Ks(M6V) = 9.60 ; exemplar LHS 2026 Teff(M6V) = 3190 K ; Bertone04[NextGen] Teff(M6V) = 3050 K ; Schmidt-Kaler82 Teff(M6V) = 2967 K ; Rajpurohit18 (mean for N=3 M6Vs) Teff(M6V) = 2950 K ; Johnson66 Teff(M6V) = 2950 K ; ter. stan. GJ 65 Teff(M6V) = 2920 K ; exemplar LSPM J0011+5908 Teff(M6V) = 2900 K ; ter. stan. GJ 3146 Teff(M6V) = 2883 K ; RojasAyala12(mean N=13 M6V stars) Teff(M6V) = 2881 K ; sec. stan. GJ 1245B (median Teff) Teff(M6V) = 2857 K ; pri. stan. GJ 406 (median Teff) Teff(M6V) = 2846 K ; Golimowski04 Teff(M6V) = 2830 K ; Filippazzo15 calibration (M6V-T9V) Teff(M6V) = 2818 K ; interp logL vs. Rad for logL=-2.980 Teff(M6V) = 2810 K ; Mann15 calib for [Fe/H]=0.0 trend for R=0.132, M_Ks=9.3 Teff(M6V) = 2800 K ; Bessell91 "old disk" Teff(M6V) = 2800 K ; Rajpurohit13(N=2) Teff(M6V) = 2800 K ; Cifuentes20 for CARMENES M6V(N=16) Teff(M6V) = 2800 K ; empirical L-R relation, for logL=-3.012 Teff(M6V) = 2777 K ; ter. stan. LHS 5142 Teff(M6V) = 2750 K ; Bessell79 (Blackbody Teffs from Veeder74) Teff(M6V) = 2758 K ; EEM N=34 Teffs Teff(M6V) = 2520 K ; ter. stan. GJ 283B (single Teff calculated from V-K) => adopt Teff(M6V) = 2810 K (logT = 3.449) [last updated 4/9/2020] BCv(M6V) = -2.32 mag ; Bertone04[NextGen] BCv(M6V) = -3.08 mag ; Schmidt-Kaler82(BCv=-3.21 + 0.13 offset) BCv(M6V) = -3.115 mag ; Casagrande08 for Teff=2810K BCv(M6V) = -3.753 mag ; sec. stan. GJ 1245B (calc using Mann15) BCv(M6V) = -4.13 mag ; BC_K=2.97, V-K=7.30 BCv(M6V) = -4.136 mag ; consensus trend for Teff=2850K BCv(M6V) = -4.305 mag ; Mann15(V-J=6.343) BCv(M6V) = -4.413 mag ; pri. stan. GJ 406, using Mann15 BCv(M6V) = -4.43 mag ; Bessell91("old disk"; BCv = (V-I)-BC_I) BCv(M6V) = -4.438 mag ; pri. stan. GJ 406/LHS 36 (Golimowski04; using BC_Ks & calc. Mv) BCv(M6V) = -4.487 mag ; pri. stan. GJ 406, using Pavlenko06 below => adopt BCv(M6V) = -4.13 mag [updated 11/3/2019; BC_Ks=2.97, V-Ks=7.10] BC_Ks(M6V)= 3.042 mag ; pri. stan. Wolf 359(calc. Rabus19) BC_K(M6V) = 3.034 mag ; Golimowski04(SpT function) BC_K(M6V) = 3.01 mag ; pri. stan. Wolf359/LHS 36 (Golimowski04) BC_K(M6V) = 3.010 mag ; pri. stan. Wolf359 (calc. using Mann15) BC_K(M6V) = 2.97 mag ; LHS 36 (Leggett01) BC_K(M6V) = 2.968 mag ; Mann15(V-J=6.154) BC_K(M6V) = 2.946 mag ; Leggett01 polynomial for I-K=3.186 BC_K(M6V) = 2.936 mag ; pri. stan. Wolf359 (calc using Pavlenko06) BC_K(M6V) = 2.870 mag ; sec. stan. GJ 1245B (calc using Mann15) BC_K(M6V) = 2.855 mag ; Leggett01 polynomial for J-K=0.957 => adopt BC_Ks(M6V) = 2.97 mag [last updated 11/3/2019] logL(M6V) = -3.003 dex ; Morrell19 trend for logL for M_Ks=9.32(slight extrap.) logL(M6V) = -2.980 dex ; M_Ks=9.22, BC_Ks=2.97 => Mbol = 12.190 logL(M6V) = -2.97+-0.02 dex ; non stan. LHS 36 (Golimowski04) logL(M6V) = -2.97 dex ; LHS 36 (Leggett01) logL(M6V) = -2.82 dex ; sec. stan. GJ 1245B (see below) => adopt logL(M6V) = -2.980 dex [updated 11/15/2021] => adopt Mbol(M6V) = 12.190 mag [updated 11/15/2021] Rad(M6V) = 0.1349 Rsun ; Mann15 trend M_Ks=9.22, [Fe/H]=0.0 Rad(M6V) = 0.1365 Rsun ; logL=-2.98, Teff=2810K Rad(M6V) = 0.1398 Rsun ; Rabus19 trend for Teff=2810K => adopt Rad(M6V) = 0.137 Rsun [updated 11/15/2021] Mass(M6V) = 0.098 Msun ; Mv=16.88 => Delfosse10 calibration Mass(M6V) = 0.101 Msun ; pri. stan. GJ 406 (Jenkins09) Mass(M6V) = 0.102 Msun ; M_Ks=9.22 => Delfosse10 calibration Mass(M6V) = 0.1045 Msun ; M_Ks=9.22 => Mann18 calib. Mass(M6V) = 0.108 Msun ; M_Ks=9.22 => Benedict16 calibration Mass(M6V) = 0.108 Msun ; sec. stan. GJ 1245B (Jenkins09) Mass(M6V) = 0.1195 Msun ; GJ 65B (dynamical) => adopt Mass(M6V) = 0.105 Msun [updated 11/15/2021] # No Standards Houk75, Boeshaar85, Keenan85 do not list M6V standards # Primary Standard GJ 406 = Wolf 359 = LHS 36 = CN Leo = StKM 2-681 (J1056+0700) M5.5V: Hawley97 M5.9: Mann15 *M6.0V: Boeshaar76,Turnshek85(stan;dM6e),Bidelman85(M6),Bessell91(M6Ve),Kirkpatrick91(pri),Kirkpatrick93,Kirkpatrick94,Kirkpatrick97(stan),Henry02,Geballe02,Henry04(M6.0Ve),Kirkpatrick(GrayCorbally09),Newton14(stan) M6.5Ve: Joy74,Mukai90(M6.5) M8:e: : Stephenson86 Undoubtedly the most agreed upon M6V standard. V=13.529+-0.025(Mermilliod91), V=13.53(Kilkenny98), V=13.507+-0.006(Landolt09), V=13.52(Bessell83), B-V=2.013+-0.018(Mermilliod91), B-V=2.034+-0.0069(Landolt09), B-V=2.00(Bessell83), U-B=1.268+-0.131(Mermilliod91), U-B=1.165+-0.0346(Landolt09), V-I=5.12(Morel78), V-Ic=4.037(Bessell83), V-Ic=4.000+-0.0062 (Landolt09), V-Ic=4.032(Kilkenny98), V-Rc=1.856(Kilkenny98), V-Rc=1.860(Bessell83), R-Ic=2.177(Bessell83), R-I=2.46(Morel78), R-Ic=2.174+-0.0025(Landolt09), R-Ic=2.176(Kilkenny98), J=7.085+-0.024(2MASS), H=6.482+-0.042(2MASS), Ks=6.084+-0.017(2MASS). WISE: W1=5.807+-0.055, W2=5.487+-0.031, W3=5.481+-0.015, W4=5.310+-0.031. allWISE: W1=5.836+-0.138, W2=5.457+-0.062, W3=5.483+-0.015, W4=5.301+-0.033. Ks-W1=0.277(WISE), Ks-W1=0.248(allWISE). V-J=6.444(Mermilliod91 & 2MASS), (V-Ks)=7.445(Mermilliod91 & 2MASS), plx = 418.9+-2.4 mas (Harrington93), plx = 413.13 1.27 mas (Weinberger16), plx=415.1794+-0.0684mas(GaiaEDR3). Mbol=12.18+-0.08(Golimowski04), BC_Ks=3.01+-0.07(Golimowski04), log(L/Lsun)=-2.97+-0.02 dex(Golimowski04). Mv = 16.587+-0.009 mag, M_Ks = 9.164+-0.018 mag. Hence BCv = Mbol - Mv = 12.18 - 16.618 = -4.438. Mass: 0.101Msun(Jenkins09). Teffs: 2500K(Casagrande08), 2520K(Jenkins09), 2600K(Leggett00), 2657+-20K(Rabus19), 2700K(Dieterich14), 2800K(Pavlenko06), 2808+-27K(Mann15#2), 2818+-60K(Mann15#1), 2857+-112K(Newton14), 2865+-60K(Gaidos14), 2887+-20K(RojasAyala12), 2900K(Golimowski04), 2900K(Rajpurohit18), 2911K(Rice10), 3000+-100K(Jones02,[Fe/H]=-0.5+-0.5), 3185K(Terrien15#1), 3356K(Terrien15#2) => Adopt Teff = 2857K. Rojas-Ayala12 estimates [Fe/H] ~ 0.18+-0.17, and Newton15 [Fe/H] ~ 0.31 or 0.30. Yes, systematic error among several modern Teff estimates for arguably the best studied M6V star is at the +-250K level! Jone's IR spectroscopy was compatible with Teff=2900K for [Fe/H]=-1.0 and Teff=3100K for [Fe/H]=0.0. mbol = 9.02(Pavlenko06; assumes MbolSun = 4.75, Lsun=3.86e26), mbol = 9.07(Leggett00). The Pavlenko06 mbol is approximately consistent with BCv = mbol - V = 9.02 - 13.507 = -4.487, BC_Ks = 9.02 - 6.084 = 2.936. Mann15 estimates fbol = (0.57980+-0.00690)e-11 W/m2, on IAU2015 scale mbol = 9.094+-0.013, hence BC_Ks = 9.094 - 6.084 = 3.01, BCv = 9.094 - 13.507 = -4.413. Rabus19 measures diameter and estimates Teff: 2657+-20K (notably 200K cooler than median of published values!), Rad=0.159+-0.006Rsun, fbol=(0.563+-0.044)e-8 erg/s/cm (=>mbol=9.126+-0.085 on IAU2015 scale), tetLD=0.582+-0.020mas. BCv = mbol - V = 9.126 - 13.507 = -4.381. BC_Ks = 9.126 - 6.084 = 3.042. Gaia EDR3: plx=415.1794 0.0684mas, G= 11.038391+-0.003138, E(BR/RP)=1.663, Bp-Rp=4.184836, Bp-G=2.731895, G-Rp=1.452941 => M_G=14.13. Can't find GaiaDR2 entry. # Secondary Standard GJ 1245B = G 208-45 = LHS 3495 = NLTT 48415 *M6V: Rodono80,McCarthy88,Kirkpatrick91(pri),Kirkpatrick93,Kirkpatrick94,Geballe02,CNS4 M5.5V: Boeshaar85(dM5.5),Reid04 7" away from G208-44 = GJ 1245AC, and *not* G 208-44, which is considered a M5.5V standard, even though Reid04 classify "C" as a M7V. V=13.990(Mermilliod91), V=14.01(CNS4,Henry04), B-V=1.980(Mermilliod91), B-V=1.97(CNS4), Rc=12.36(Henry04), R-I=2.07(Delfosse98,CNS4), V-Rc = 1.65(Henry04), Ic=10.27(Henry04), V-Ic=3.74(Reid04,Henry04), J=8.275+-0.026(2MASS), H=7.728+-0.031(2MASS), Ks=7.387+-0.018(2MASS), V-J=5.715(Mermilliod91 & 2MASS), (V-Ks)=6.603(Mermilliod91 & 2MASS). Plx = 220.2+-1.5mas(Harrington93). Mv = 15.70+-0.01 mag, M_Ks = 9.10 +- 0.02 mag. Mass: 0.108Msun(Jenkins09). Using Casagrande10 relations, I estimate mbol=10.085+-0.025 mag, hence for Harrington93 parallax => Mbol=11.80mag, logL=-2.82. Mann15 estimates fbol = (0.1986+-0.0032)e-11 W/m2, on IAU2015 scale mbol = 10.257+-0.017. Hence BC_Ks = mbol - Ks = 10.257 - 7.387 = 2.87, BCv = 10.257 - 14.01 = -3.753. Teffs: 2673K(Jenkins09), 2859K(Mann15#1), 2881K(RojasAyala12), 2919+-34K(Mann15#2), 2944+-60K(Gaidos14) => median Teff = 2881K. plx=214.5285+-0.0824, G=11.9190+-0.0006, E(BR/RP)=1.635, Bp-Rp=3.8419, Bp-G=2.4343, G-Rp=1.4076 => M_G=13.576+-0.001. G-V = 11.919 - 13.99 = -2.071. # Tertiary Standard GJ 283B = L 745-46B = LFT 544 = LHS 234 = LP 783-2 = LTT 2916 = NLTT 18270 = 2MASS J07401922-1724449 *M6.0V: Bessell91(M6e),Henry94,Hawley97,Henry02,Reid04 M6.5V: Dieterich Star does not appear to be as well studied as the other standards, and has only one published Teff estimate. No type listed in Hawley97. Note that Bessell type is for "GJ 283" or "LHS 234"? GJ 283A is DA3 or DC or DZ6 white dwarf 21" away. V=14.47(Salim03, bad value?), V=16.42(Gliese91,Reid04), V=16.55(vanAltena95), V=16.54(Bessell91), V=16.67(Hawley97) [I adopt value from vanAltena95], B-V=1.83(Gliese91), Ic=12.43(Bessell91), V-I=4.110(Casagrande08), Rc=14.68(Bessell91), V-R=1.860(Casagrande08), V-J=4.31(Salim03) J=10.155+-0.022(2MASS), H=9.628+-0.023(2MASS), Ks=9.291+-0.022(2MASS), V-J=6.395(vanAltena95 & 2MASS), (V-Ks)=7.259(vanAltena95 & 2MASS), V-K=7.40(Hosey15). Plx = 112.4+-2.7 mas (vanAltena95), plx=109.0542 0.0827 mas(GaiaDR2). M_Ks = 9.48+-0.02 mag, Mv = 16.74 mag. Using Casagrande08 relations, I estimate m_bol = 12.11+-0.02 mag (the JHK m_bols agree within 0.03 mag). Teffs: 2520K(V-K=>Casagrande08), 2900K(Rajpurohit18). [Fe/H]=+0.2(Rajpurohit18). GaiaDR2: plx=109.0542+-0.0827mas, G=13.9783+-0.0003, E(BR/RP)=1.703, Bp-Rp=4.3916, Bp-G=2.9192, G-Rp=1.4724 => M_G = 14.167+-0.002. G-V = 13.9783 - 16.55 = -2.572. LHS 5142 = LP 606-35 *M6V: Kirkpatrick91(sec),Kirkpatrick95,Kirkpatrick11 M6.5: Kirkpatrick93 M7: West08(M7e),Burgasser15 M8e: West11 DwarfArchives cites Kirkpatrick91. V=18.50(Lepine05), V=16.458(Lazorenko15), I=14.527+-0.03(DENIS), J=12.106+-0.024(2MASS), H=11.538+-0.023(2MASS), Ks=11.161+-0.021(2MASS) V-J=6.39(Lepine05 & 2MASS), (V-Ks)=7.34(Lepine05 & 2MASS). plx = 50.1+-3.8mas(Dittman14), plx = 46.0133 0.1883 mas (GaiaDR2) => M_Ks=9.475+-0.023. Mv=16.81(Lepine05,Dittman14). Per = 1.663d(Newton16). Teff=2777+-64K(Muirhead18,Stassun18). GaiaDR2: 46.0133+-0.1883mas, G=16.1160+-0.0014, E(BR/RP)=1.745, Bp-Rp=4.4644, Bp-G=2.9635, G-Rp=1.5009 => M_G = 14.430+-0.009. G-V = 16.1160 - 18.50 = -2.384 (note that the Lazorenko15 Vmag yields non-sensical G-V=-0.342, perhaps a flare?). GJ 65B = UV Ceti = L 726-8B = LHS 10 *M6.0V: Joy74,Kirkpatrick91(pri),Kirkpatrick94,Henry94,Henry02,Dieterich12 M6-e(joint): Boeshaar76(stan,GJ65AB,Walker83) M5.5: Cruz02,Reid04 The famous "UV Ceti" is specifically the secondary in the system - GJ 65B. Washington Double Star catalog lists GJ 65 (WDS 01388-1758 = LDS 838) as a 2.1" binary as of epoch 2010, with V mags of 12.7(A) and 13.2(B). GJ 65B (LHS 10) is the infamous star "UV Ceti". Kervella16 conducts comprehensive interferometric and dynamical study of this system. Joy74, Kirkpatrick91, and Henry02 call consider the pair of stars A & B to be M5.5V and M6.0V, respectively. Reid04 lists GJ 65AB as M5.5V, but lists B as a M5.5V also. Boeshaar76 and Boeshaar94 call the unresolved pair M6-V, while Reid04 calls the unresolved pair M5.5V. So most experts consider A & B to be ~0.5 subtype different, and they are ~0.5 mag different in V magnitude. It's not obvious that such a system is optimal for use as a standard star(s), especially if one is not blessed with <1" seeing. V(AB)=12.492+-0.075(Mermilliod91), V=12.00(Leinert97), V(AB)=11.96(Penny79), V(AB)=12.06(Winters15,Winters19), delta(V)=0.53+-0.06(Penny79), B-V(AB)=1.823+-0.021(Mermilliod91), B-V(AB)=1.85(Penny79), U-B(AB)=1.097+-0.088(Mermilliod91), U-B(AB)=1.39(Penny79). Adopting V=12.06(Winters15) and delta(V)=0.53(Penny79) => V(A)=12.58, V(B)=13.11. plx = 375+-4 mas(Geyer88), 373.7+-2.7mas(vanAltena95). Mv=15.44 (V(B)=12.58, plx=373.7mas). The 2MASS JHK and Mermilliod91 UBV photometry for GJ 65AB is unresolved: J=6.283+-0.019, H=5.690+-0.029, Ks=5.343+-0.021. Teffs: 2900K(Kochukhov17), ~2900K(Kervella16,evol.track), ~3000K(Kervella16,adopted for limb darkening), 3167+-12K(Kovaleva12), => adopt = 2950K. Kervella16 lists: M=0.1195+-0.0043 Msun, logg=5.113+-0.015, [Fe/H]=-0.12+-0.20 (A is -0.03+-0.20), R=0.159+-0.006 Rsun, Radius inflacted ~13% in both stars, presumably due to inhibition of convection by magnetic fields. vsini = 30.6+-2 km/s. GJ 3146 = LHS 1375 = 2MASS J02162977+1335136 M5.5V: Reid04,Dieterich12,Stelzer13,Cortes-Contreras17 *M6V: Henry04,Kirkpatrick10(opt.,near-IR),Rojas-Ayala12,Newton14(near-IR) M6.1: Mann15 M6.39: Newton14(from Terrien15) V=15.790(Mermilliod91), B-V=1.980(Mermilliod91), J=9.871+-0.021(2MASS), H=9.314+-0.022(2MASS), Ks=8.981+-0.017(2MASS). V-Ks=6.809(Mermilliod91,2MASS). plx = 108.3+-5.0mas(Dittman14) => Mv=15.96, M_Ks=9.15. Teff = 2829+-60K(Mann15), 2868+-21K(Rojas-Ayala12), 2899+-48K(Mann15#2), 2936K(Stelzer13), 3181K(Terrien15#1), 3312K(Terrien15#2) => adopt Teff=2900K. GaiaDR2: plx=109.8030+-0.1933, G=13.5794+-0.0006, E(BR/RP)=1.648, Bp-Rp=3.9546, Bp-G=2.5337, G-Rp=1.4208 => M_G = 13.782+-0.004, G-V = 13.5794 - 15.79 = -2.21. # Deprecated Standards GJ 4037 = LHS 3339 = LP 102-320 = NLTT 45700 M5V: Reid04 *M5.5V: Kirkpatrick91(sec) M6V: Boeshaar85(stan),Hawley97,Geballe02,Basri06 Depricated as a standard as it appears to have been little used since Kirkpatrick91. plx=61.10+-3.90mas(Dittman14), but see Dahn02. Not in Washington Double Star Catalog. Dahn02 derives: plx=46.4+-1.1 mas ((m-M)=1.67+-0.05), V=17.98+-0.02, R=16.20+-0.020, I=14.03+-0.01, K=10.78+-0.03, M_J = 10.05, BC_J = 2.02, Mbol = 12.07, R = 0.1308 Rsun, Teff = 2957+-70K. Hence, mbol = 13.74, and BCv = 13.74 - 17.98 = -4.24, BC_K = 13.74 - 10.875 = 2.87. V=17.90(Lepine05), V=17.98(Gliese91, vanAltena95), V=17.43(Salim03), J=11.819+-0.023(2MASS), H = 11.227+-0.023(2MASS), Ks=10.875+-0.016(2MASS). V-Ks=17.98-10.875=7.105. Teffs: 4100K(Morales08). # Exemplars LHS 2314 = GJ 3624 = NLTT 25417 = LP 551-13 = 2MASS J10490338+0502227 *M6.0V: Henry04 M6Ve: Bessell91 M6: Reid95 First three published classifications all agree on M6. V=19.11(vanAltena95,Henry04), V=19.14(Winters19), Ic=14.91(Henry04), V-Ic=4.20(Henry04), J=12.535+-0.024(2M), H=11.970+-0.024(2M), Ks=11.596+-0.019(2M). V-Ks = 19.11 - 11.596 = 7.514. Mv = 16.88, M_Ks=9.36. Gaia DR2: plx=35.7616+-0.1279mas, G=16.4703 0.0017, E(BR/RP)=1.726, Bp-Rp=4.3379, Bp-G=2.8526, G-Rp=1.4853 => M_G=14.24+-0.01. G-V = 16.4703 - 19.11 = -2.640. Gaia EDR3: plx=35.8703+-0.0786mas, G=16.453+-0.003, E(BP/RP)=1.678, Bp-Rp=4.448883, Bp-G=2.978394, G-Rp=1.470490. Mv=16.91(Winters19,GaiaEDR3). LHS 2026 = GJ 3504 = LP 605-23 *M6.0Ve: Bessell91(M6Ve),Henry04(M6.0V) V=18.94(Henry04,Winters15), V=18.44(Gliese91), Rc=16.69(Henry04), Ic=14.32(Henry04), V-Rc=2.25(Henry04), V-Ic=4.62(Henry04), J = 12.035+-0.023(2M), H=11.477+-0.021(2M), Ks=11.142+-0.023(2M). V-Ks = 18.94 - 11.142 = 7.798. Gaia DR2: plx = 49.0900+-0.1212mas(GaiaDR2), G= 15.8781 0.0008, E(BR/RP)=1.710, Bp-Rp=4.3006, Bp-G=2.8264, G-Rp=1.4742 => M_G=14.33, Mv=17.40, M_Ks=9.60, G-V = 15.8781 - 18.94 = -3.062. SCR J0630-7643 AB = SIPS J0630-7643 M5.0: Henry18 *M6Ve: Henry04,Reid07(M6.0),Stelzer13(M6.0),Gaidos14(M6) 1.2" binary, WDS lists magnitudes 15.5 and 15.7, so probably similar types. Resolved in Gaia DR2 (plx: 112.4936+-0.1222, 112.6759+-0.1105 mas; GaiaDR2). G=13.2069+-0.0019 & 13.4197+-0.0025. delta(G) = 0.2128. V=14.816(Henden16), V=14.82(Winters11), B-V=1.778(Henden16), R=13.08(Winters11), I=11.00(Winters11), Ks=7.923+-0.027(2MASS). V-Ks(AB)=14.82 - 7.923 = 6.897. M_Ks=8.18+-0.03. adopting delta(V)=delta(G), then V(A)=15.47, V(B)=15.68 => Mv(A)=15.73, Mv(B)=15.94. Adopting delta(Ks)=delta(G), then Ks(A)=8.574, Ks(B)=8.787 => M_Ks(A)=8.83, M_Ks(B)=9.05. Teffs: 2860K(Stelzer13), 2881+-67K(Muirhead18), 2892K(Stassun18), 2980+-60K(Gaidos14) => = 2886K. LSPM J0011+5908 = LSR J0011+5908 = 2MASS J00113182+5908400 M5.5V: Lepine03,AlonsoFloriano15 M6: RojasAyala12(near-IR) *M6.1: Mann15 M6.5V(e): Lepine09 V=15.611+-0.040(Mann15), V=15.63(Winters11), J=9.945+-0.023(2MASS), H=9.393+-0.026(2MASS), Ks=9.093+-0.021(2MASS). V-Ks = 15.63 - 9.093 = 6.537. GaiaDR2: plx = 107.4214+-0.0651mas(GaiaDR2), G= 13.4914 0.0004, E(BR/RP)=1.628, Bp-Rp=3.8302, Bp-G=2.4280, G-Rp=1.4022. G-V= 13.4914 - 15.611 = -2.120. M_G=13.647, Mv = 15.79. M_Ks=9.25+-0.02. Teffs: 2805+-87K(Muirhead18), 2864+-60K(Mann15), 2898K(Houdebine19), 2918+-18K(RojasAyala12), 2921+-32K(Mann15#2), 2936K(Stelzer13), 3211K(Terrien15#1), 3347K(Terrien15#2) => = 2920K. # Other Stars GJ 1245C = G 208-44B M6.0V: Kirkpatrick91,Henry02 M5.5V: Hawley97,Reid04 binary with GJ 1245 AC (M5.5V+M7.0V) GJ 316.1 = LHS 2034 = AZ Cnc M6.0V: Bessell91,Henry04,Shkolnik09 *M6.5Ve: Dahn85 M7.0V: Newton14(M7V,near-IR),Bardalez14(M7.0) Literature values ~M6.5+-0.5. B-V=2.02(Dahn85), V=17.59(Henry04), V=17.68(Dahn85), Ic=13.45(Henry04), V-Ic=4.14(Henry04), V-I=4.34(Dahn85; "Kron-Mayall system"), J=11.053+-0.022(2M), H=10.419+-0.023(2M), Ks=10.046+-0.018(2M). V-Ks = 17.59 - 10.046 = 7.544. plx = 71.1+-1.0 mas (Henry04). GCVS lists variability with max 14.1, min 20.5! LHS 2471 = GJ 3693 M6.0V: Henry04,Hawley97(M6) M6.5V: Bessell91 *M7V: Newton14(near-IR),Bardalez14(near-IR) M8: Bardalez14(optical) Wide dispersion - appears to be ~M7+-1, earlier in optical. V=18.11(Henry04), Ic=13.66(Henry04), V-Ic=4.45(Henry04), J=11.256+-0.022(2M), H=10.660+-0.027(2M), Ks=10.262+-0.022(2M). V-Ks = 18.11 - 10.262 = 7.848. GJ 3512 = LHS 252 = G 234-45 M6V: Rojas-Ayala12(M6;K-band),Newton14(near-IR) *M5.70: Terrien15 M5.5: Reid95,Morales19(no ref.) Adopt M5.7 or M6-V, following Keenan's notation. Clearly bluer than M6V standards. B-V=1.93(vanAltena95), V=15.05(vanAltena95). J=9.615+-0.023(2MASS), H=8.996+-0.028(2MASS), Ks=8.668+-0.021(2MASS). V-Ks = 15.05 - 8.668 = 6.382. Morales19 reports 0.46 Mjup planet - huge for star of this mass. LHS 1604 = DENIS J0351000-005244 = SDSS J035100.03-005245.9 = LP 593-68 M6.0V: Cruz02,Henry04 M7e: West11 M7.5: Cruz03 M8e: West08 M5.5/7.0e: Crifo05 Not good agreement on types, probably ~M7+-1. V=18.02(Henry04), Ic=13.80(Henry04), V-Ic = 4.22(Henry04), J=11.302+-0.024(2MASS), H=10.609+-0.022(2MASS), Ks=10.232+-0.024(2MASS). V-Ks = 18.02 - 10.232 = 7.788. 2MASS J0435+1537 = 2MASS J04354898+1537198 = 2MASSW J0435489+153719 M6V: Gizis99(M6e),Hawley02(stan) Only 6 SIMBAD references - 1999-2008. Discovered by Gizis99. Not used as a standard anywhere else besides Hawley02. Poorly studied. # Standards & Exemplar color-mag data V-Ks M_Ks 6.537 9.25 6.897 8.83 7.798 9.60 7.514 9.36 6.809 9.15 7.34 9.475 7.259 9.48 6.603 9.10 7.445 9.20