Emden Equation

Purpose

- Describe the density of an isothermal hydrostatic sphere
- Such a sphere is called a " bonner-ebert" sphere.

Method

- Transform $\underline{2}$ coupled ODE's into $\underline{1}$ second-order non-linear ODE.
- Non-dimensionalize the equation to find general characteristics of the density function.

The Equations

For this derivation one starts with the equations of :

- Hydrostatic Equilibrium--

$$
\frac{\mathrm{dP}}{\mathrm{dr}}=-\frac{\left(\mathrm{GM}_{r} \rho\right)}{r^{2}}(1)
$$

- Mass of a spherical shell---

$$
\frac{\mathrm{dM}_{r}}{\mathrm{dr}}=4 \pi r^{2} \rho \text { (2) }
$$

Combining the Equations

- By solving (1) for $\mathrm{M}(\mathrm{r})$,

$$
\begin{equation*}
M(r)=-\frac{r^{2}}{\mathrm{G} \rho} \frac{\mathrm{dP}}{\mathrm{dr}} \tag{3}
\end{equation*}
$$

we can couple these two equations by plugging $M(r)$ into (2). This yields:

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{\mathrm{dr}}\left[\frac{r^{2} \mathrm{dP}}{\rho \mathrm{dr}}\right]=-4 \pi \mathrm{G} \rho \tag{4}
\end{equation*}
$$

- (4) is the 2 nd-order non-linear ODE we were looking for. It is known as the "Emden - Equation", and its solution gives us ρ as a function of r.
- Note that with the equation of state, we can relate P to T. By making the substitution,

$$
\begin{align*}
& P=\mathrm{nkT}=V_{s}^{2} \rho, \\
& \text { where } V_{s}^{2}=\sqrt{\frac{\mathrm{kT}}{m}} \tag{5}
\end{align*}
$$

we may specify the Temperature of the isothermal sphere and our D.E. will then only contain ρ, r as variables.

Solving the Equation

By non-dimensionalizing this equation, we can find and plot a scaled numerical solution:

The fully specified problem becomes:

$$
\begin{gather*}
y^{\prime \prime}+\frac{\left(y^{\prime}\right)^{2}}{y}+\frac{2 y^{\prime}}{x}+y^{2}=0 \tag{6}\\
y=\rho / \rho_{c} \\
x=r \sqrt{\frac{4 \pi \mathrm{Gm} \rho_{c}}{\mathrm{kT}}} \tag{8}\\
y[0]=1, y^{\prime}[0]=0 \tag{9}
\end{gather*}
$$

The solution of which is a Bonner-Ebert Sphere.

Numerical Solution

The "general" shape of the curve looks like this--

The y-axis can easily be scaled to different physical densities by multiplying the y -values by ρ_{c}. I am now in the stage of trying to appropriately plot these curves before researching a bit more into sensible values for ρ_{c} and T .

Once I do this, I can make a series of plots for different values of T, that will look like:

Here the different curves would represent the different values of ρ_{c}

