
Virial Theorem and Cloud Stability

Virial Equilibrium

� From combining the equations of mass and momentum conservation, one can arrive at the virial theorem 
for a stationary cloud : 
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� The condition for virial equilibrium in this equation is: 
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When we consider this equilibrium condition for ISOTHERMAL, SPHERICAL, NON-MAGNETIZED clouds, 
we can study stability. The virial equilibrium condition becomes: 
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Which integrates to -- 
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This is the equation of virial equilibrium of a spherical, isothermal, non-magnetized cloud. Since the LHS 
constitutes a surface pressure-"like" term, and the RHS is the sum of an internal pressure-like term and 
gravitational potential energy, it seems intuitively correct that this is an equilibrium equation if we consider 
the LHS external parameters and the RHS internal. Thus, let's call P on the LHS Pofor outside pressure:
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� In the limit R ® ¥, gravity becomes neglible. Thus at large radii, equilibrium is established by a balance of 
internal and external pressures: 

                                        4 Π Rcl
3 Po = 3 Cs

2 Mcl

                                        
          

In the small radii limit though, gravity is important and so that second term does not vanish. We can solve 
for a minimum radius of a cloud in virial equilibrium by solving for an R such that the external pressure of 
(*) equals 0: 
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Any cloud with a smaller radius than this will not be in virial equilibrium. It is important to note that the 
Rcl > Rmin alone is not enough to insure stability. 
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Cloud Stability

�  Rcl > Rmin is not enough to insure stability. That is, while Rcl > Rminwill satisfy virial equilibrium (it was after 
all, derived from virial theorem considerations), NOT ALL EQUILIBRIA ARE STABLE. To find stable 
equilibria, we seek to satisfy the condition: 
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we see that at large enough radii, the derivative becomes negative (the second term < first term). Thus the 
derivative changes sign, defining a max pressure. Solving for Rcrit and Pcrit gives:
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Higher pressures, produce no equilibria. 
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