Virial Theorem and Cloud Stability

Virial Equilibrium

= From combining the equations of mass and momentum conservation, one can arrive at the virial theorem
for a stationary cloud :
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= The condition for virial equilibrium in this equation is:
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When we consider this equilibrium condition for ISOTHERMAL, SPHERICAL, NON-MAGNETIZED clouds,
we can study stability. The virial equilibrium condition becomes:
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Which integrates to --
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This is the equation of virial equilibrium of a spherical, isothermal, non-magnetized cloud. Since the LHS
constitutes a surface pressure-"like" term, and the RHS is the sum of an internal pressure-like term and
gravitational potential energy, it seems intuitively correct that this is an equilibrium equation if we consider
the LHS external parameters and the RHS internal. Thus, let's call P on the LHS P,for outside pressure:
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= In the limit R - oo, gravity becomes neglible. Thus at large radii, equilibrium is established by a balance of
internal and external pressures:
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In the small radii limit though, gravity is important and so that second term does not vanish. We can solve

for a minimum radius of a cloud in virial equilibrium by solving for an R such that the external pressure of
(*) equals 0:

Any cloud with a smaller radius than this will not be in virial equilibrium. It is important to note that the
R¢ > Rmin @lone is not enough to insure stability.
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Cloud Stability

m  R; >Rpin is not enough to insure stability. That is, while R¢; > Rninwill satisfy virial equilibrium (it was after

all, derived from virial theorem considerations), NOT ALL EQUILIBRIA ARE STABLE. To find stable
equilibria, we seek to satisfy the condition:
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Since,
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we see that at large enough radii, the derivative becomes negative (the second term < first term). Thus the
derivative changes sign, defining a max pressure. Solving for R, and Pg,i; gives:
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Higher pressures, produce no equilibria.
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