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Abstract
Triggering A Climate Change Dominated "Anthropocene": Is It Common Among

Exocivilizations?

by Ethan Savitch

Bachelor of Science

Professor Adam Frank & Dr. Jonathan Carroll-Nellenback, Supervisors

Department of Physics and Astronomy

We seek to model the coupled evolution of a civilization and their host planet through
the era when energy harvesting by the civilization drives the planet into new and adverse
climate states. In this way we ask if triggering Anthropocenes of the kind humanity is
experiencing might be a generic feature of planet-civilization coevolution. This question
has direct consequences for both the study of astrobiology and the sustainability of hu-
man civilization. Furthermore, if Anthropocenes prove fatal for some civilizations then
they can be considered as one form of a "Great Filter" and are therefore relevant to discus-
sions of the Fermi Paradox. In this study we focus on the effects of energy harvesting via
combustion and vary the planet’s initial chemistry and orbital radius.

We find that in this context, the most influential parameter dictating a civilization’s fate
is their host-planets climate sensitivity, which quantifies how global temperatures change
as CO2 is added to the atmosphere. Furthermore, this is in itself a function of the planet’s
atmospheric CO2 level, so planets with low levels of CO2 will have high climate sensitivi-
ties and high probabilities of triggering climate change. Using simulations of the coupled
nonlinear model combined with semi-analytic treatments, we find that most planets in our
initial parameter space experience diminished growth due to climate effects, an event we
call a “climate-dominated” Anthropocene.

http://www.pas.rochester.edu/
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Chapter 1

Introduction

Human activity is beginning to drastically alter the state of many of Earths interconnected
systems, such as its atmosphere, hydrosphere, biosphere, etc. While there are many mea-
sures of our impact on the planet, global warming driven by CO2 emissions represents the
most dramatic (Solomon et al., 2007). Collectively, these planetary changes have been de-
scribed as a new geological epoch called the Anthropocene (Crutzen, 2002). Recent studies
have even shown that 2020 marks the point at which human-made "anthropogenic" mass
has exceeded all of Earth’s living biomass (Elhacham, Ben-Uri, Grozovski, et al., 2020).
Thus, it is of great importance to consider the long-term impacts of the Anthropocene on
human civilization.

While the specifics of such impacts are not clear, their consequences have been theo-
rized to be as drastic as full-scale extinction. Also of interest are the requirements needed
to successfully enter the Anthropocene and develop a sustainable version of civilization.
Such sustainable planetary states were explored in (Frank, Alberti, and Keliedon, 2017). Its
even possible that such requirements are nonexistent, so that the Anthropocene represents
a "tipping point" at which recovery is futile (Lenton et al., 2008; Kuehn, 2011). Any knowl-
edge that can be gained on the generic features of civilization-planetary co-evolution will
be useful in navigating our own version of the Anthropocene.

The ubiquity and severity of Anthropocenes also has large astrobiological implica-
tions. Their ubiquity could provide insight into the nature and even existence of techno-
signatures, i.e. imprints from technology created by an intelligent civilization. While their
severity, if fatal for some civilizations, would allow the Anthropocene to be considered
as one form of a "Great Filter", making it relevant to discussions of the Fermi Paradox
(Carroll-Nellenback et al., 2019).

The aim of this paper is to develop a model that can simulate the coupled relationship
between a civilization that harvests energy via combustion and their host planet. Such a
model will allow us to gain insight into the fragility of earth-like intelligent civilizations.
In addition, it will also allow us to ask if Anthropocenes might be a generic feature of
any planet evolving a species that intensively harvests resources for the development of
a technological civilization (Haqq-Misra and Baum, 2009; Frank, Alberti, and Keliedon,
2017; Mullan and Haqq-Misra, 2019). We focus our analysis on a specific type of Anthro-
pocene where the main driver for the end of population growth is climate change. We call
this a "climate-dominated" Anthropocene.

This paper is a follow-up to Frank et al., 2018, where they investigated the same ques-
tion by developing an analytic form of the model. Their model consisted of a series of
coupled differential equations that were able to roughly model the relationship between
energy harvesting civilizations and their host planets. Since this was done by purely ana-
lytical means, the aim of this current project is to add a numerical climate model to phys-
ically simulate planetary response to an evolving exo-civilization. The model we used
is called an Energy Balance Model (EBM), which takes in a variety of planetary inputs
and outputs the global temperature, which we take to be representative of the global state
(North and Kim, 2017). In this study, the two planetary parameters that we will focus
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on are orbital distance and partial CO2 pressure. Since our experience with such coupled
relationships is limited to our experiences on Earth, we start by using Earth-like inputs,
allowing us to replicate our planets growing population and increasing temperatures. Our
paper then asks the question, if we moved Earth to different orbits or changed its partial
CO2 pressure, would we still be experiencing a climate-dominated Anthropocene?

Theoretically, we can reduce our planets temperature by moving it away from the sun
in order to decrease the amount of solar radiation reaching us. But, in this case, our ability
to produce CO2 without consequence could end up making the atmosphere toxic, as too
much CO2 can present its own unwanted consequences (Wittmann and Pörtner, 2013).
Thus, in setting up our initial conditions we used two key assumptions:

1. The civilization has a biology that requires water to be in its liquid form, this fixes
the range of orbital radii by requiring that initial global temperatures be in the range

273K < T0 < 373K

2. The civilizations require CO2 concentrations to be below a certain threshold (Schwi-
eterman et al., 2019; Ramirez, 2020; Catling et al., 2005).

In Schwieterman et al., 2019, they discuss these limited conditions for which complex
aerobic life can survive relative to that for microbial life. In doing so they define a Complex
Life Habitable Zone (CLHZ) which aims to improve upon the traditional temperature-
defined habitable zone. The major difference being that the CLHZ assumes both of our key
assumptions, where traditionally only the first assumption is considered. Furthermore,
they find that the upper limit for pCO2 amenable to human life is approximately 5, 000
ppm. This has important implications. For example, the assumption that pCO2 remain
below this produces a habitable zone around our sun that is approximately 65% smaller
than that imposed purely by temperature requirements.

The plan of the paper is as follows. In Chapter 2 we develop the coupled model and
use Earth-like inputs to calibrate it as well as test its efficacy at modelling technological
civilizations. In Chapter 3 we analyze the model to determine its intrinsic timescales,
which we further use to develop some dimensionless quantities. We then continue to use
these quantities to develop a linearized version of our coupled model, which allows us to
derive a dimensionless timescale that could predict the rate that civilizations will collapse.
This allows us to identify the solution domains for our model. In Chapter 4 we discuss
the results of the full nonlinear coupled model. We first investigate the effect that moving
Earth to different orbits or changing its initial CO2 levels would have on the resulting co-
evolution of civilization and host-planet. We then show the results from a full parameter
sweep of these two parameters. Finally, we run a suite of models in which the civilizations
tolerance for global temperature change is varied. In Chapter 5 we summarize our work,
discuss our findings and their implications, and consider possible next steps.
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Chapter 2

Developing the Coupled Model

2.1 Overview

Our model consists of three coupled differential equations. They describe the time evolu-
tion of global temperature (T), population (N), and partial CO2 pressure (P).

Ṫ = EBM(P, a) (2.1)
Ṅ = f (T, P) (2.2)
Ṗ = CN (2.3)

Where ẋ = dx/dt and a is orbital distance. The first equation is given by our climate
model, called an energy balance model (EBM), which will be described in more detail in
Section 2.1.1. The second equation is given by a population growth model developed by
Adam, Jonathan, and I, which will be described in more detail in Section 2.1.2. The last
equation determines how changes in population affect global pCO2 levels. It says that
the rate of increasing pCO2 in our atmosphere is directly correlated to the global popula-
tion. Thus, the proportionality constant between the two, denoted C, acts to quantify a
civilizations annual, per-capita, carbon footprint.

Our model begins by using the orbital distance (a) and initial partial CO2 pressure (P0)
as inputs for our climate model (Eq. 2.1) in order to determine the planets initial temper-
ature (T0). This process will be discussed further in Section 2.1.1. This initial temperature,
as well as our planets initial global population (N0) and atmospheric partial CO2 pres-
sure (P0) are then used as inputs for our model of population growth (Eq. 2.2) in order
to determine what our planets population would be after some given time period. This
method will be described in more detail in Section 2.1.2. After determining this value of
population, it is used in conjunction with the planets initial partial CO2 pressure in order
to determine what this value will be after some time ∆t, as described by Eq. 2.3. This value
of pCO2 is then inputted back into our energy balance model to repeat the process.

More generally, if ∆t is one year, then the algorithm our model follows in order to
determine the global temperature, population, and partial CO2 pressure at year n, as func-
tions of what those values were the year prior is given by:

(1) Tn = EBM(Pn−1, a)∆t + Tn−1

(2) Nn = f (Tn, Pn−1)∆t + Nn−1

(3) Pn = CNn∆t + Pn−1

2.1.1 Energy Balance Climate Model

Energy balance models (EBM’s) approximate planetary temperature by balancing the in-
coming solar radiation with the outgoing long-wave, terrestrial radiation. Our specific
version of the model uses a variety of planetary inputs, such as pCO2 levels, orbital semi-
major axis, planetary albedo, orbital eccentricity, etc. The code is 1-D in that it models
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climate as a function of latitude. The program then discretizes global temperatures into
these bands in order to model our latitudinal heat transport as diffusion according to the
equation

Cv
dT(θ, t)

dt
= ψ(1− A)− I +∇ · (κ∇T(θ, t)) (2.4)

Where Cv is the effective heat capacity of the surface and the atmosphere, T is global
temperature, θ is latitude, ψ is the solar flux, A is the planetary albedo as a function of
both temperature and partial CO2 pressure, I is the outgoing infrared radiation, and κ is
the diffusive parameter. For our purposes we averaged over all latitudinal bands in order
to find an average global temperature.

Our version of the model incorporates the effect of carbon dioxide concentrations by
making both I and A functions of temperature and partial CO2 pressure. The code we used
was originally developed by Darren Williams in Williams and Kasting, 1997. It was then
modified by Jacob Haqq-Misra, who used it most recently in Fairen, Haqq-Misra, and P.,
2012. This version of the model is publicly available on GitHub at https://github.com/
BlueMarbleSpace/hextor/releases/tag/1.2.2.

Figure 2.1: Surface plot of
our solar systems Habitable
Zone, calculated with the
EBM given by Eq. (2.4). The
blue dot marks the location
of our planet, where the
temperature was given by our
pre-Anthropocene value of

approximately 287.09K

2.1.2 Population Model

The differential equation governing population growth initially acts like exponential growth,
with an initial per-capita growth rate, R0, defined as the difference between the per-capita
birth (A0) and death (B0) rates.

R0 ≡ A0 − B0 =
1
N

dN
dt

∣∣∣∣
t=0

This acts to represent our civilizations growth rate prior to the Anthropocene, and is thus
called the natural growth rate. We allow the growth rate to vary with time in order to
incorporate the effects of technological advancements and climate change. In our model
we assume that a civilizations technological abilities are correlated with their production
of combustion byproducts. Furthermore, as their technological abilities increase, so does
their ability to produce offspring. Thus, we define an enhanced growth term which acts to
raise our civilizations net growth rate as the amount of CO2 in the atmosphere increases
from its initial value.

R+ = R0

(
1 +

P− P0

∆P

)

https://github.com/BlueMarbleSpace/hextor/releases/tag/1.2.2
https://github.com/BlueMarbleSpace/hextor/releases/tag/1.2.2
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Where ∆P is a normalization constant that roughly corresponds to the amount of pCO2
that needs to be generate by a civilization in order to double their growth rate. As tech-
nology increases the corresponding feedback raises global temperatures. Thus, we define
a diminished growth term to lower the net growth rate as planetary temperatures increase
from their initial values.

R− = R0

(
T − T0

∆T

)2

Where ∆T is a normalization constant that describes the range of temperatures amenable
to a civilizations health. Thus, this quantity is called the civilizations "temperature toler-
ance". This term can refer to either a persons biology or the civilization as a whole. The
final governing equation for population is

dN
dt

= min[NR+, R0(Nmax − N)]− NR−

The min function in the above expression was used to introduce a carrying capacity (Nmax)
into the systems dynamics while avoiding any nonlinear dependencies on population. The
carrying capacity acts to smoothly decrease the civilizations growth rate as they approach
their maximum population. It ensures that the civilizations don’t grow to levels that are
unrealistic based purely on food production capabilities. Putting it all together gives

Ṅ = f (T, P) = min
[

NR0

(
1 +

P− P0

∆P

)
, R0(Nmax − N)

]
− NR0

(
T − T0

∆T

)2

= R0N

[
min

(
1 +

P− P0

∆P
,

Nmax

N
− 1
)
−
(

T − T0

∆T

)2
]

2.2 Testing the Model

Table 2.1: Earth-Like Inputs for Coupled Model

Parameter Description Earth Value
Nmax Carrying Capacity 20 billion

R0 = A0 − B0 Initial Birth Coeff. 0.005 yr−1

∆T Population Temp Tolerance 5K
∆P Technology Birth Benefit 30 ppm
C per capita CO2 generation 2.75× 10−4 ppm

106 ppl∗yr

In order to provide both a test and a calibration of our model we run it using Earth-like
inputs. We allow the model to start at t0 = 1820 CE, when the global population was
N0 = 1.29 Billion and the global pCO2 levels were around P0 = 284 ppm. The rest of the
input variables are shown in Table 2.1. The resulting evolution of temperature, population,
and growth rate is shown in Figure 2.2. Furthermore, see Figure 2.3 to see a comparison
between some of our models free parameters and their analogous values on Earth.
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Figure 2.2: The model results are the solid black line and global data is represented by the blue
dotted line. As can be seen, the model does a pretty good job of tracking the rise in population,

growth rate, and temperature during the last two centuries.

Figure 2.3: The birth rate A0 was
fixed by the assumption that the av-
erage time between births was ap-
proximately 25 years. The death rate
B0 was then adjusted to tune the
population part of our model. The
resulting natural growth rate is ap-
proximately what it was on Earth
prior to the Anthropocene, shown in
the top plot as the black dotted line.
Finally, we adjusted C in order to
match our climates response to pop-
ulation growth, shown as the dotted
line in the bottom plot. The result-
ing value is approximately equal to

its current value on Earth.
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Chapter 3

Analyzing the Coupled Model

3.1 Climate Sensitivity

In order to derive a timescale for climate change, we first need a way to quantify how
changes in pCO2 affect global temperatures. This relationship can be approximated by
assuming that temperature has a simple logarithmic dependence on pCO2 (Huang and
Bani Shahabadi, 2014)

T ≈ T0 + ∆TF log(P/P0) (3.1)

Where T0/P0 are the initial values of global temperature and partial CO2 pressure. Tak-
ing the derivative of this yields one of the most influential quantities that determines
civilization-planet coevolution, called ’climate sensitity’, traditionally defined by the rate
at which global temperatures change proportional to pCO2.

dT
dP

=
∆TF

P
=

∆TF

P0
e−
(

T−T0
∆TF

)
≡ De−

(
T−T0
∆TF

)
= Climate Sensitivity (3.2)

Thus, ∆TF acts to quantify the change in temperature required for the climate sensitivity
to drop by a factor of e, and is approximately 4K for Earth (IPCC, 2014). Furthermore, we
have defined

D ≡ ∆TF

P0
=

dT
dP

∣∣∣∣
P=P0

= Initial Climate Sensitivity (3.3)

As a result, it follows that

P0 =
∆TF

dT/dP|P0

= Initial pCO2

This relationship allows us to bifurcate our model into two classes of solutions.

(a) Low P0

• High Initial Climate Sensitivity (dT/dP|P0) means that the initial planetary state
will be very unstable against small perturbations in pCO2.

• Low ∆TF means that only a small change in temperature is needed to dramati-
cally reduce this climate sensitivity.

• We expect civilizations on such planets to be at a high risk for a climate-dominated
Anthropocene as defined in Chapter 1.

(b) High P0

• Low Initial Climate Sensitivity (dT/dP|P0) means that the initial planetary state
will be less sensitive to small perturbations in pCO2.

• High ∆TF means that a large amount of pCO2 must be generated by a civilization
in order to reduce this climate sensitivity further.
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• We expect civilizations on such planets to be at a low risk for a climate-dominated
Anthropocene, yet a high risk for overpopulation or CO2 poisoning.

3.2 Intrinsic Timescales

In analyzing the model we see that their are three intrinsic timescales. The population
dynamics are dictated by the net growth rate, as discussed in Section 2.1.2. Thus, the
initial value of this is what determines our first relevant timescale, that for population
growth.

tG =
1

R0
= Timescale for Population Growth

We can also define a timescale to quantify the rate of a civilizations technological advance-
ments.

tT =
∆P

CNmax
= Timescale for Technological Advancements

Finally, using our approximations for climate sensitivity given in Section 3.1, our last
timescale quantifies how climates respond to evolving civilizations.

tC =
∆T

CNmaxD
= Timescale for Climate Change

The temperature tolerance (∆T) appears as it dictates the timescale for climate to be driven
out of its "safe operating zone".

3.3 Dimensionless Quantities

We can continue by using the three timescales derived above, in Section 3.2, to define
some dimensionless quantities. First, we define γ to be the ratio of the population growth
timescale to the climate change timescale.

γ =
tG

tC
=

DCNmax

R0∆T

This acts to quantify a civilizations risk of having an Anthropocene in an analogous way
to how we used P0 in Section 3.1. In fact, the two cases discussed in that section directly
correlate with the cases of high and low γ. As shown in that section, if P0 is very low, then
the initial climate sensitivity (D) will be very high (Eq. 3.3). Thus, the case of very low
initial partial CO2 pressure (P0) correlates to that for very high γ. Similarly, very high P0
will result in a very low γ.

If γ = 1, then the rate of climate change and population growth is equivalent. The
value of the carrying capacity required to accomplish this is then representative of the
number of people required to force the climate out of equilibrium in a single growth
timescale. We call this quantity the "Anthropogenic Population", defined like

NA ≡
Nmax

γ
=

R0∆T
DC
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Furthermore, we can define another dimensionless quantity, denoted θ, by dividing
the climate timescale by the technological timescale

θ =
tC

tT
=

∆T
D∆P

This then acts to quantify how much technology can enhance population growth as the
civilization is in the process of destroying their environment, i.e. as global temperatures
change by ∆T. It follows that multiplying this by γ give us another parameter, defined as
the ratio between the timescale for population growth to that for technology to advance.

β ≡ θγ =
tG

tT
=

CNmax

R0∆P

Since this is independent of D, it acts to quantify the extent to which CO2 production
increases net growth rates under the assumption that the civilization is already at its car-
rying capacity. This can be used to define a technological civilization, which is of interest
as these are the type of civilizations we are interested in for this paper. We say that a civi-
lization is ’technological’ if and only if they have β > 1, meaning that their timescales for
technological advancements are shorter than that for their population to grow.

With our three timescales we would expect our coupled model to have six domains of
behavior, but the requirement that β > 1 eliminates half of these.

(1) Climate-dominated Anthropocene (γ > 1)

• tT > tG > tC =⇒ θ < 1, β < 1
• tG > tC > tT =⇒ θ > 1, β > 1X
• tG > tT > tC =⇒ θ < 1, β > 1X

(2) Overpopulation (γ < 1)

• tT > tC > tG =⇒ θ < 1, β < 1
• tC > tG > tT =⇒ θ > 1, β > 1X
• tC > tT > tG =⇒ θ > 1, β < 1

Three domains remain. In summary, technological civilizations in our model either ex-
perience a climate-dominated Anthropocene or overpopulate their planet. If they are ex-
periencing an Anthropocene then their technological abilities will dictate the dynamics of
their evolution and eventual collapse. This will be discussed in more detail in Section 3.5.

A last dimensionless quantity arises from our multiple definitions of normalized tem-
perature change. The temperature tolerance, ∆T, is defined to be the temperature change
required to decrease net growth rates, thus is focused on the civilizations biology. In con-
trast, ∆TF is the temperature change needed to change the climate sensitivity dT/dP, thus
is focused on the civilizations environment. The ratio of these two then tells us the number
of e-foldings it takes for climate sensitivity to drop as global temperatures change by ∆T.

α ≡ ∆T
∆TF

See Section 3.4.1 for more information on its affect on the models.
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3.4 Dimensionless Model

Our complete coupled model is given by the three equations

dP
dt

= CN (3.4)

dT
dt

= EBM(P, a) (3.5)

dN
dt

= R0N

[
min

(
1 +

P− P0

∆P
,

Nmax

N
− 1
)
−
(

T − T0

∆T

)2
]

(3.6)

Before introducing any dimensionless quantities, we can combine our equations govern-
ing temperature and pCO2 change by applying the approximation discussed in Section 3.1
given by Eq. 3.2.

dT
dt

=
dT
dP

dP
dt

=

(
De−

T−T0
∆TF

)
(CN) = CNDe−

T−T0
∆TF (3.7)

Furthermore, we can remove the pCO2 dependence on our equation governing population
growth by employing the approximation given by Eq. 3.1. This results in

dN
dt

= R0N

[
min

(
1 +

P0

∆P

[
e

T−T0
∆Tf − 1

]
,

Nmax

N
− 1
)
−
(

T − T0

∆T

)2
]

(3.8)

Now in order to derive the complete dimensionless model, we need some more di-
mensionless quantities, summarized in Table 3.1. With these definitions, we can divide
Eq. 3.7 by R0∆T and Eq. 3.8 by R0Nmax to arrive at our dimensionless model.

dη

dτ
= min

[
η

(
1 +

θ

α
(eαε − 1)

)
, 1− η

]
− ηε2 (3.9)

dε

dτ
= γηe−αε (3.10)

Table 3.1: Dimensionless Model Quantities

Var Definition Description
η N/Nmax Normalized population
τ R0t Normalized time
ε (T − T0)/∆T Normalized temperature
θ ∆T/(D∆P) Normalized Birth rate acceleration
γ (DCNmax)/(R0∆T) Normalized forcing
α ∆T/∆TF Ratio of temperature change to affect biology to tem-

perature change to affect climate sensitivity
β (CNmax) / (R0∆P) Increase in birth rate after burning sufficient CO2 to

change temperature by ∆T
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3.4.1 Role of α

It is worth considering the role that α plays in our model. As shown above, we have
defined it like

α =
∆T
∆TF

=
Temperature Change to Affect Biology

Temperature Change to Affect Climate Sensitivity (dT/dP)

As a result, if α� 1, then ∆TF � ∆T. In this case we know that climate change will have a
greater impact on climate sensitivity then it will have on the growth rate. Since increasing
temperatures reduce both quantities, we know that climate change will reduce the climate
sensitivity before reducing the net growth rates for civilizations with high α. Figure 3.1
shows runs with γ = 10, θ = 1 and α = 0, 1, & 2.
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Figure 3.1: Trajectories for different values
of α. As compared to the run with α = 0,
the models with higher α take longer for their
death rates to overtake their birth rates, which
raises the peak population while delaying the
time for it to be reached. Furthermore, the
higher α means that temperature changes lead
to a greater reduction in climate sensitivity
(dT/dP), which has the effect of softening the

decline.

3.5 Dimensionless Timescales (Low α Limit)

In the limit of low α, Eqs. 3.9 and 3.10 reduce to

η̇ = min [η(1 + θε), 1− η]− ηε2 = dη/dτ

ε̇ = γη = dε/dτ

It is of interest to note that the first term in the min function, η(1 + θε), represents the
civilizations technologically-enhanced growth rate. While the second term, 1− η, places
an upper limit on how much technology can boost such rates by enforcing a maximum
growth rate, thus acts analogously to the carrying capacity in the full nonlinear model.
We find that the dimensionless time for civilizations to collapse after reaching their peak
population is

τcoll =


1/γ γ� 1, θ � 1
1/θ γ� 1, θ � 1
1/
√

2 γ� 1, θ � 1

(3.11)

Qualitatively, the behavior of our models in these three regions of parameter space can be
summarized as follows
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Figure 3.2: The two black dotted
lines divide the plot into the three
regions discussed above. The left-
most region (a) has γ � 1, and is
independent of θ. The middle re-
gion (b), is defined by γ � 1, θ �
1. The rightmost region (c), is de-

fined by γ� 1, θ � 1.
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(a) γ� 1, θ � 1 (tC > tG > tT)

• In this region, populations grow faster than temperatures increase, so civiliza-
tions will reach their carrying capacities before their changing climate begins to
increase their death rates.

• As a result, their collapse rate is dictated by the rate of climate change, which we
found in Section 3.2

τcoll = R0tC =
1
γ

(b) γ� 1, θ � 1 (tG > tC > tT)

• In this region, the timescale for climate change is less than that for population
growth, but greater than that for technological advancements

• Thus, civilizations will have enough time to gain technological abilities capable
of increasing their birth rates, but will not be able to reach their carrying capacity
with this enhanced growth rate.

• As a result, civilizations will enter the Anthropocene with a higher than natural,
"technologically-enhanced" growth rate, which as a result leads to a higher than
natural, "technologically-enhanced" collapse rate

τcoll =
1
θ
=

γ

β

(c) γ� 1, θ � 1 (tG > tT > tC)

• In this region, the timescale for climate change is less than that for population
growth and technological advancements

• Thus, civilizations will begin to fall before they have had enough time to substan-
tially increase their population or technological capabilities.

• As a result, all civilizations in this region will enter the Anthropocene with their
"natural" growth rate (R0), thus will also collapse with approximately the same
"natural" collapse rate, which we find to be

τcoll =
1√
2
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Equation 3.11 was graphed by rewriting it in the following form

τcoll = max

[
1
γ

,
1

max(
√

2, β/γ)

]
(3.12)

Where β = θγ is assumed to be constant across all the models at approximately 36.67. The
full derivation/explanation for how we found Eqs. 3.11 and 3.12 is shown in Appendix A.
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Chapter 4

Exploring the Coupled Model

4.1 Constant Temperature/Composition Models

We now return to the complete nonlinear coupled model discussed in Chapter 2. As
mentioned in the introduction, the motivation behind this study is to investigate the fragility
of earth-like intelligent civilizations. Specifically, we were interested in how the co-evolution
of such civilizations and their host planets depends on various initial conditions. The two
parameters that we focused on were the orbital distance of the planet (a) and its initial
partial CO2 pressure (P0 = pCO2,0). The effect of these parameters on the model are not
independent, as they both affect the planets climate sensitivity (dT/dP), as discussed in
Section 3.1.

In order to explore our models dependencies on these parameters, we ran two exper-
iments. The first of these we called "constant composition". These keep initial pCO2 con-
stant and allow the initial (equilibrium) planetary temperature, T0, to vary as we change
the orbital distance (a). Using T0 = 287K as our fiducial value, we ran four additional
models with temperatures evenly spaced above and below T0 in steps of 6K. This spacing
was chosen in order to have all models safely within the classically defined habitable zone,
so that water on the surface remains in its liquid form (273K < T0 < 373K). In Figure 4.1
we show the location of the models in the (a, T0) plane. This representation is important
because we will later overlay contours of various quantities such as γ and the collapse
time

(
τcoll

)
when we run a larger array of models that sweep across (a, T0) space.

The second set of experiments are "constant temperature" models. We varied initial
pCO2 to keep T0 = 287K. Five models were run centered on Earth’s pre-Anthropocene
pCO2 level (P0 = 284 ppm) with two below and three above each spaced by log(pCO2) =
0.7. The highest, P0 ≈ 28, 000 ppm, was meant to illustrate the evolution of a system with
CO2 concentrations beyond what animal life on Earth can tolerate (Schwieterman et al.,
2019).
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Figure 4.1: Experiment #1: Con-
stant Composition was defined by
constant levels of pCO2 = 284 ppm,
and is denoted by the pluses (+). Ex-
periment #2: Constant Temperature
was defined by constant equilibrium
temperature Teq = 287.09K, and is
denoted by the crosses (×). The two
experiments intersect at Earth when
pCO2 = 284 ppm and Teq = 287.09.
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In Figure 4.2 we show all trajectories for both experiments. The upper panel shows
results from constant initial composition models while the lower panel shows those for
constant initial temperature models. The similarities and differences both within and
between the models offers insight into the dynamics and its relationship to our dimen-
sionless parameters. For example, the value of γ can be seen to uniquely determine the
resulting evolution of population. Furthermore, the upper panel shows that models with
constant pCO2 yet different orbital radii and initial temperatures will share the same γ.
The reasoning for this will be discussed in Section 4.2.
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Figure 4.2: The top plot shows the trajectories for Experiment #1: Constant Composition, defined
by constant levels of initial pCO2 (P0 = 284 ppm). The bottom plot shows the trajectories for
Experiment #2, defined by constant initial global temperatures (T0 = 287.09K). The most influential
quantity for the co-evolution of intelligent civilizations and their planets is the climate sensitivity
(dT/dP), which is a function of pCO2. The initial value of pCO2 was found in order to make any
given distance have any given temperature. Thus, this value of initial pCO2 principally determines
the resulting co-evolution. This is why the trajectories for Experiment #1 are very similar, as they
all have approximately equal initial levels of pCO2. In contrast, the trajectories in the bottom plot
all have the same temperature, but different distance. As a result, these models also have different
levels of initial pCO2, resulting in different climate sensitivities. This is why the trajectories in this

plot are much more diverse.

4.2 Parameter Sweeps of Initial Temperatures and Orbital Radii

To explore the broad dependence on initial conditions we next choose 100 different dis-
tances (a) and initial temperatures (T0) for the models. The results of this parameter
sweep are shown as a grid of contour plots in Figure 4.3. The left column of the plots
show quantities taken from the full numerical models, while the right column shows the
corresponding analytical quantities.
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In the top left we present contours and color mapping of the initial atmospheric com-
position, log(P0) = log(pCO2,0), for all the runs. This was calculated using only the un-
coupled energy balance model. Note that we exclude models with log(P0) > 3.7 as being
outside the CLHZ (Schwieterman et al., 2019), as discussed in Chapter 1.

The top right panel in Figure 4.3 presents effective γ, defined like γeff ≡ γe−α, as will
be discussed in Appendix B, where α = ∆T/∆TF and

γ =
DCNmax

R0∆T

Since all of our models shared earth-like parameters, differing only by T0/P0/N0, the only
term in γ that differs between them is D. Thus, as discussed in Section 3.1, it follows that

γ ∝ D ≡ dT
dP

∣∣∣∣
P0

=
∆TF

P0
(4.1)

As a result, γ is principally determined by the initial value of the climate sensitivity,
dT/dP|P0 , which as shown above is inversely proportional to the initial partial CO2 pres-
sure (P0). It follows that P0, shown in the top-left panel of Figure 4.3, uniquely determines
what γ is. As a result, the contour lines of initial P0 also correspond to contour lines of γeff.
Recall that even models with with γ slightly less than 1 can still have their development
hindered by environment impacts. Thus, we find that most civilizations in the CLHZ (as
defined in Chapter 1) will be at risk for a climate-dominated Anthropocene.

The middle row describes the population dynamics for the civilizations and focuses on
parameters associated with population growth. The left column presents the numerically
measured percentage of the carrying capacity that each civilization reached, Npeak/Nmax.
Note that all models in the parameter sweep began with a carrying capacity of Nmax =
20 billion. We see that only the outermost orbits at each initial temperature are able to
rise to their carrying capacity before increasing temperatures significantly increase death
rates and halt population growth. The right column shows the analytic predictions of the
similar quantity, NA, defined in Section 3.3 as the number of people required to force the
climate out of equilibrium in a single growth timescale (tG = 1/R0).

Finally, the last row of plots considers what happens after the population reaches its
peak, N = Npeak. On the left we show the time for populations to decline by 20% from
their peak. Here we see most of the models experience a decline on timescales of a few
centuries while initially hotter worlds on inner orbits can have declines over decades. The
analytically derived collapse timescale, τcoll , is shown as the plot in the lower right. Once
again we see timescales of order decades to a few centuries associated with significant
population decline. It is of interest that τcoll shows the "valley" feature at intermediate or-
bital distances where it falls and then rises again as one moves outward in orbital distance
along a line of constant T0. This is as expected, and the reasoning is explained in Section
3.5.

4.3 Dependence of Civilization Temperature Tolerance (∆T)

All the models discussed in the last section used a constant value for the civilization’s tem-
perature tolerance, ∆T = 5K. This parameter defines the range of temperatures amenable
to a civilizations health, and is intended to capture any biological/sociological aspects of
the pop-planet co-evolution. Thus, in this section we vary ∆T to investigate its effect on
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Figure 4.3: The plots on the left hand side show numerically calculated quantities, while the plots
on the right hand side show analytically derived quantities. The top row shows values calculated
with the uncoupled energy balance model. The middle row shows quantities related to the popu-
lations growth. The bottom row shows timescales related to the populations collapse. The bottom
left of the plots are grey because of limitations imposed by the EBM. The top right part of the plots
are grey because the value of pCO2 required there was greater than 5, 000 ppm, a level deemed un-
inhabitable for long-term habitability by intelligent civilizations (Schwieterman et al., 2019). The

black arrow points to the location of the experiment that we ran in the ’danger zone’.
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the models outcomes. We accomplish this by repeating the parameter sweep discussed in
the last section for ∆T = 0.5K, 1K, 2.5K, and 10K. The results are summarized in Figure
4.4, where we show the marginal probability distributions for both γeff and the time for
civilizations to decline. These are represented as "violin plots", which show the probably
distribution of each for all values of ∆T, along with their median values and first moments.

Note that the median values for the collapse times increase with values of ∆T. This
is to be expected as the larger range of tolerated temperatures leads to a higher proba-
bility for civilizations to reach their carrying capacity before increasing temperatures can
cause them to collapse. The distributions of γeff reflect this by showing how increasing
temperature tolerances decrease γ (see Section 3.3).

We also show data for the models as a scatter plot of γeff versus decline time in Figure
4.5. On the x and y axis we show corresponding marginal probability distributions for
γeff and the decline time. These are shown as a kernel density estimation graph such
that the area under each curve is normalized to one. Shown as the solid black line is our
analytically derived collapse time, given by Equation 3.12. It can be seen that our analytic
approximation reproduces the necessary features that arise in our numerical runs. The
two vertical dashed lines divide the graph into three regions, as discussed in Section 3.5.

In summary, the leftmost region corresponds to low γ and high θ. This region results
largely in overpopulation, which is the reason behind the long decline times. The middle
region corresponds to both high γ and high θ, where technology is able to accelerate birth
rates, but eventually ends up contributing to an increased death rate and a shortened
decline time. The rightmost region corresponds to a high γ and a low θ, where climate
changes on a faster timescale then both technology and population growth. Thus, in this
region, civilizations experience climate change before they experience any growth benefits
due to technology. This means that these civilizations reach only a tiny fraction of their
carrying capacity before they begin to decline.

Also, we note that in Figure 4.5 the distribution for ∆T = 1K seems to peak higher than
∆T = 0.5K. This occurs because many of the models with ∆T = 0.5K are in the ’valley’
of our collapse time, and the marginal distribution is a projection onto the y-axis. This
can also be seen as the large shoulder protruding in the distribution of collapse times for
∆T = 0.5K. Despite this, the violin plots shown in Figure 4.4 confirm that the median time
to decline for ∆T = 0.5K is less than that for ∆T = 1K

The most important takeaway from these results is that an ever increasing share of
the models experience climate-dominated Anthropocenes as ∆T decreases. For ∆T <
5K, most models experience rapid population declines. Even for ∆T = 10K, the average
decline time was 384.04 years and 22.2% of models had decline times less than 200 years.
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Figure 4.4: This figure shows a box plot of the marginal distributions shown in Figure 4.5. The
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lower half of the data-set, while the box’s upper bound is the median of the upper half of the data-
set. It is of interest to note how increasing the population-temperature sensitivity parameter (∆T)

results in a steadily decreasing γeff and a steadily increasing time for the population to decline.
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dashed lines divide the graph into three regions, as discussed in Section 3.5.
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Chapter 5

Conclusion

The aim of this paper was to model the coupled relationship between an energy harvest-
ing civilization and their host planet, based on the assumption that the civilizations energy
generation comes from some form of combustion. The work here builds off the work done
in Frank et al., 2018, where they developed a simple analytic form of such a model to
explore the idea that Anthropocenes might be a generic feature of any planet evolving
a species that intensively harvests resources for the development of a technological civ-
ilization (Haqq-Misra and Baum, 2009; Frank, Alberti, and Keliedon, 2017; Mullan and
Haqq-Misra, 2019). The principle innovation in this paper was the inclusion of a numer-
ical climate model, allowing us to more realistically simulate planetary response to an
evolving exocivilization. This model, called an Energy Balance Model (EBM), allowed us
to investigate the effect that varying such planetary parameters as orbital distance and
partial CO2 pressure has on global temperatures. Furthermore, in contrast to (Frank et al.,
2018), a different form for the population growth equation was also used.

Our equation for population growth was based on the logistic equation, so that ini-
tially it acted like exponential growth, with a "natural" growth rate based on our own,
prior to the industrial revolution. In our model, we associated the civilizations technolog-
ical capabilities with their production of combustion byproducts. As a result, increasing
levels of pCO2 acted to increase birth rates. As technology increased, the corresponding
feedback raised global temperatures. This negative feedback was reflected in our equa-
tion for population growth by having increasing temperatures decrease the growth rate.
Like the classic logistic equation, our version also had a carrying capacity, which acted to
smoothly decrease the civilizations growth rate as they approached their maximum popu-
lation. This ensured that our civilizations couldn’t grow to levels that are unrealistic based
purely on food production capabilities.

Using simulations of the coupled nonlinear model combined with semi-analytic treat-
ments, we find that the majority of the planets in the CLHZ (Schwieterman et al., 2019;
Ramirez, 2020) undergo a ’climate-dominated’ Anthropocene. We have defined such an
Anthropocene to occur when changes in climate occur on timescales that are short with
respect to the populations own evolution. In other words, we say that an Anthropocene
is ’climate-dominated’ when the rate of climate change is faster than that for popula-
tion growth. If a civilization experiences a climate-dominated Anthropocene, then they
will begin to decline before reaching their carrying capacity. Thus, any civilization that
does not reach their carrying capacity falls under our definition of experiencing a climate-
dominated Anthropocene. We find that this occurs primarily on systems with high cli-
mate sensitivities (dT/dP), where small technological advancements can trigger massive
climate change. Furthermore, as discussed in Section 3.1, we find that this is most likely
to occur on planets with low levels of CO2 in their atmosphere. Likewise, civilizations
with low tolerances to temperature change (∆T) are likely to experience such climate-
dominated Anthropocenes irregardless of their orbital distance, as small deviations in
their climate states could trigger massive extinction events.
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Although, some civilizations are able to reach their carrying capacities before experi-
encing any dramatic climate change. Despite not falling under our definition of a climate-
dominated Anthropocene, such civilization’s should not be considered to have escaped
the possibility of population collapse. These civilizations are said to have overpopulated
their planet, which will inevitably lead to its own adverse outcomes. We find that such
systems tend to have very low climate sensitivities and very high concentrations of CO2.
If we take Earth as an example, then that abundance of CO2 could make such systems
uninhabitable for the vast majority of complex aerobic life (Schwieterman et al., 2019),
ensuring that climate-dominated Anthropocenes are a generic feature of any intelligent
civilization.

Future work on this could focus on investigating the effect of energy harvesting by
wind or solar. Alternatively, future efforts could explore different models for population
growth and/or different methods of coupling such a model to the climate state. Other
avenues for improvement could relate to considerations of the impact of various stellar
spectral types, or our model could be modified to allow the civilizations to change their
behavior, either by switching energy sources or limiting population growth. Doing so will
allow further insights to be gained about the astrobiology of the Anthropocene by investigat-
ing issues associated with the biospheric aspects of sustaining long-term civilizations.
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Appendix A

Derivation of Collapse Time (
τcoll

)
A.1 Low Climate Forcing (γ � 1)

In this case, in order for β � 1, we require that θ � 1. Thus, this implies that the tech-
nological timescale is less than the growth timescale which is less than the timescale for
climate change. In this region of parameter space, models begin with exponentially rising
populations. This is because at the start, we expect that η ≈ ε ≈ 0, so that ηε2 ≈ 0 and
1− η ≈ 1. It follows that at the start, η(1 + θε) < 1− η so that

η̇ = η(1 + θε)− ηε2 ≈ η

As population rises exponentially, eventually the carrying capacity is reached, at which
point η ≈ 1, 1− η ≈ 0, and ηε2 ' 1− η. Thus...

η̇ = 1− η − ηε2 ≈ −ε2

This shows that when the carrying capacity is reached, the population will start to decline
at a rate dictated by the environmental state, i.e. the global temperatures relative to their
initial values. Also, since η ≈ 1, we know that

ε̇ = γ

Thus, the rate of population collapse is dictated by the environment, whose rate is dictated
by γ. It follows that in this region the timescale for population collapse is

τcoll =
1
ε̇

∣∣∣∣
η=1

= 1/γ (γ� 1) (A.1)

In other words, τcoll = R0tC, where tC is defined in Section 3.2.
It is of interest that this collapse time is independent of θ. This means that the increase

in global CO2 concentrations does not have a significant effect on the growth rate until
after the population has peaked. After the population peaks, it begins to fall. As a result,
1− η is increasing while η(1+ θε) is decreasing. So initially after the collapse the birth rate
is increasing. But, eventually their comes a point during the collapse when 1− η > η(1 +
θε), at which point the min function switches terms and as a result the birth rate begins
to decrease, which has the effect of decreasing the overall growth rate and expediting the
collapse. This switch between birth terms can be seen in the trajectories for these models
as the dip in the slope of η during its decline, shown in Figure A.1a. For the models with
higher θ, this dip occurs later since technology is able to increase the birth rate for a longer
time.
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Figure A.1: Trajectories of η/ε plotted against τ, found with the analytical model (α = 0)

A.2 High Climate Forcing (γ � 1)

If γ � 1, then tC < tG, so the climate changes on a much faster rate than the population
does. This is the region of the climate-dominated Anthropocene, which means that global
temperatures will begin to increase death rates before civilizations reach their carrying ca-
pacity. A consequence of this is that civilizations in this region never reach their maximum
growth rate or carrying capacity, η � 1, which implies that 1− η > η(1 + θε), so their
population growth equation will have the form.

η̇ = η(1 + θε)− ηε2 = η(1 + θε− ε2)

We can set η̇ = 0 and solve for ε to determine what the environmental state is at the point
when population begins to collapse. We call this value of ε its critical value, which we find
to be

εc =
θ

2
+

√
1 +

(
θ

2

)2

(η̇ = 0)

We can also find the time scale for the population to decline after it reaches this peak. Since
these civilizations do not reach their carrying capacity, their growth rate as they enter the
Anthropocene dictates what their collapse rate will be directly after. Thus, we use the free
fall time for civilizations as their collapse rate.

τcoll =
√
−η

η̈

∣∣∣∣
η̇=0

(γ� 1)

We can use our population growth rate equation to find this second derivative

η̈ = η(θε̇− 2εε̇) = ηε̇(θ − 2ε)

When population begins to decline, global temperatures continue to rise exponentially.
Thus, at this point, the rate of increasing temperatures is approximately equal to its critical
value.

ε̇c = εc (η̇ = 0)
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Thus, it follows that at this point, directly after η̇ = 0...

−η̈ ≈ η(2ε2
c − θεc) (η̇ = 0)

Thus, it follows that the collapse timescale for γ� 1 is given by

τcoll =
(
2ε2

c − θεc
)−1/2

(γ� 1)

This can further be broken down into two cases, dependent on θ.

Low Technological Growth Acceleration (θ � 1)

In this case, the civilizations technological abilities are not advanced enough to increase
their growth rates. Also, the fastest timescale is that for climate change. Since their rate
of technological advancements is negligible and their rate of climate change exceeds that
for population growth, these civilizations will have negligible population growth before
entering their Anthropocene. As a result, their growth rate as they enter the Anthropocene
will be approximately equal to its initial "natural" value. Thus, all civilizations in this area
will also collapse with a constant "natural" collapse rate. Specifically, if θ � 1, then εc ≈ 1
and

τcoll =
1√
2

High Technological Growth Acceleration (θ � 1)

In this case the civilizations technological abilities are able to accelerate their growth
rates. Thus, these civilizations enter their Anthropocene with an accelerated growth rate
due to their technological abilities. This accelerated growth leads to an accelerated decline,
which means that these civilizations collapse at a faster than natural rate. Specifically, if
θ � 1, then εc ≈ θ and

τcoll =
1
θ

To be more precise, civilizations with high γ and θ will initially have η ≈ ε ≈ 0, which
like the case of low gamma means that 1− η > η(1 + θε). As a result, at the beginning
η̇ = η(1 + θε− ε2), so technology has the effect of enhancing the birth rate, allowing the
civilization to grow at a faster than natural rate. The min function ensures that this rate
doesn’t reach unrealistic values by setting a maximum growth rate. Once the technology-
enhanced growth rate reaches this limit, the min function switches birth terms so that the
civilization can head smoothly into the decline with η̇ = 1− η− ηε2. At this point η begins
to decrease so 1− η starts to increase. Eventually, we reach the state we started at where
1− η > η(1 + θε). The min function again switches terms, so that the birth rate switches
from its maximum value to its technology-enhanced value. This has the effect of softening
the decline, and can be seen during the collapse of the trajectory with γ = 50, θ = 5 in
Figure A.1b as a slight deviation in the slope of η.
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Appendix B

Effective Climate Forcing (γeff)

The value of γ we defined in Section 3.3 is based on the initial value of the planets climate
state (when T = T0 and P = P0). More specifically, it is based on the initial value of the
planets climate sensitivity, thus has the form

γ =

(
CNmax

R0∆T

)
dT
dP

∣∣∣∣
T0

≡ DCNmax

R0∆T

This quantity describes the likelihood that a planets initial state will trigger a climate-
dominated Anthropocene. Likewise, we can define an ’effective’ γ, that will describe this
likelihood when the planet has reached its peak population, which occurs approximately
when global temperatures have increased by ∆T. Thus, this will have the form

γeff =

(
CNmax

R0∆T

)
dT
dP

∣∣∣∣
T0+∆T

≡
(

DCNmax

R0∆T

)
e−∆T/∆TF (B.1)

Comparing this with our equation for γ and using our definition for α as defined in Section
3.4.1 (α ≡ ∆T/∆TF), we find that

γeff = γe−α ≥ γ (B.2)

Figure B.1 shows the effect that this has on the models as a 4× 4 grid. The top left
plot shows our numerically calculated values of γ, as defined in Table 3.1 and derived in
Section 3.3, plotted versus the numerically calculated times for our models populations
to decline by 20% from their peak values. The black dotted line shows our analytical
expression for the collapse time, derived in Section 3.5. For contrast, the bottom left plot
shows the same things yet instead for γeff, as given by Eq. B.1. The biggest difference as
compared to the plot above is a net decrease in γ, which is as expected from Eq. B.2. This
also has the effect of greatly reducing the deviations from our analytical predictions, i.e.
adheres much more to our check-mark shaped prediction (see Fig. 3.2).

Although, not all deviations have been solved by using γeff. The right column of Figure
B.1 shows plots of γeff colored by orbital distance (top-right), and initial global tempera-
ture (bottom-right). It can be seen that the models that deviate greatest from our analytical
prediction are those that have large orbital radii and low initial global temperatures. As
shown in Figure 4.3, the contour lines for pCO2 travel diagonally across the parameter
space of a/T0. Thus, as a result, civilizations with high orbital distance and low initial
global temperature could have the same value of initial pCO2 as the civilizations with low
orbital distance and high initial global temperature. Since γ is principally dependent on
the value of initial pCO2, this means that these two classes of civilizations will have the
same value of γ and hence the same value of τcoll. Although, in reality, the civilizations
with the higher orbital radii end up taking longer to fall, hence have longer decline times.
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Figure B.1: The top left plot shows our numerically calculated values of γ. For contrast, the bot-
tom left plot shows the same things yet instead for γeff, as given by Eq. B.1. The biggest difference
as compared to the plot above is a net decrease in γ, which is as expected from Eq. B.2. This also
has the effect of greatly reducing the deviations from our analytical predictions, that is, adheres
much more to our check-mark shaped prediction. Although, not all deviations have been solved
by using γeff. The right column shows plots of γeff colored by orbital distance (top-right), and
initial global temperature (bottom-right). It can be seen that the models that deviate greatest from
our analytical prediction are those that have large orbital radii and low initial global temperatures.
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