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1 Introduction

Goal: make the probe range and velocity normally distributed.

Method: Add a local variable called technology to the program, use random walks to have technology be normally
distributed around the technological capabilities of the abiogenesis seed. Then make probe range and velocity
functions of this new technology variable.

2 Technology
2.1 Ornstein-Uhlenbeck (OU) Process

We use an Ornstein—UhlenbeckEl process to calculate the random walk for technology:

| vy = 0(i — 2)dt + 0d WV, | (1)

1 is the location that everything will eventually end up at. If u = 0, then their is an restoring force towards the
origin, that increases with increased distance from the origin. The higher 6 is, the quicker p is reachedEl

t
zy = zoe O+ p(l —e ) + 0/ e 0= qw, (2)
0

Thttps://en.wikipedia.org/wiki/Ornstein-Uhlenbeck_process
2We have used the change of variables: s = 29



x¢ is the initial location. It follows that the first moment, or mean of x; is given by:

Elz(t)] = Z(t) = zoe % 4 p(1 — %)

It can similarly be shown that:

Covlz(t),z(s)] = g_; (e*GIt*sl _ 676|t+5|)

It follows that:

2.1.1

o2
Varlz(t)] = Covlz(t), z(t)] = — (1 — e 2%)

Long-Term Gaussian Behavior (¢t >> 1)

‘ Elz(t >>1)] = p‘

o2
Varlz(t >> 1)] = %0

2.2 Euler-Maruyama Method

We can use a numerical method called the Euler-Maruyama method to simulate the OU process.

o time (t)-————————————————————
num_seeds = 1000

ti = #initial time

tf = 100 #final time

N = 1000 #number of time steps

Ittt Technology (T)-———————————————————————————————————
iTech =0 #value to start from

mu =0 #value to converge to

sigma = 0.05 #randomness; directly proportional to width of gaussian

theta =1 #rate of convergence; inversely proportional to width of gaussian
o e Initialize-————————————————————— -

dt = float(tf-ti)/N #length of each time step

timeList = np.arange(ti, tf, dt)

techList = np.zeros(N)

techList[0] = iTech #all seeds have the sdame initial position
fTechList = [] #final value of technology

mean
stdev

mu #mean value for large t
sigma/np.sqrt(2*theta) #width as a normal gaussain

techListAnalytic = np.random.normal(loc=mean, scale=stdev, size=num_seeds)

——————————————————————————— Calculate

Numerically--------———————————————— - - - ————————————
fig, (ax2,ax1) = plt.subplots(figsize=(15,5), nrows=2, ncols=1)

for

_ in range(num_seeds):

for i in range(1l, len(timeList)): #i starts at 1

t = (i-1) * dt #current time

tech = techlList[i-1] #current technology value

dW = np.random.normal (0, np.sqrt(dt)) #Gaussian Noise (mean=0, stdev=sqrt(dt))

dW = np.random.uniform(-1,1) # Uniformly Sampled Noise U(-1,1)

# ___________________________________________________________________________________________
push = sigma * dW #displacing force

pull = thetax(mu-tech)=*dt #restoring force

techList[i] = tech + push + pull #next position



fTechList.append(techList[-1]) #array keeping track of final values

axl.plot(timeList, techList, alpha=.5)
axl.set(xlabel=’t’, ylabel="T’)

sns.kdeplot (fTechList, ax=ax2, label=fr’Numerical ($\,\sigma_T = {np.std(fTechList):.3f}$)’) #
Numerically Calculated

sns.kdeplot (techListAnalytic, ax=ax2, label=fr’Analytical ($\,\sigma_T = {stdev:.3f}$)’) # Analytically
Calculated

ax2.set(xlabel=r’$T_{finall}$’, ylabel=’count’)

ax2.legend();

plt.tight_layout ()

plt.suptitle(f"{num_seeds} Seeds Ran for {N} Time Steps of Length dt={dt:.2f}", y=1.01);
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3 Probe Velocity (v(7)) as Function of Technology (7')

So general idea here is that total (specific) kinetic energy will scale with technology, then solving for velocity will
give v(T'). Since the units of specific kinetic energy are the same as velocity squared, we can write the constant of
proportionality in terms of the (approximate) initial probe velocity. I now make the following assumptions:

1. Technology starts from T' = 0

2. When T = 0, the initial probe velocity is v(0) = vy and vy << ¢. Thus, when technology is zero, kinetic

energy is purely non-relativistic (K = $mv?).

3. Specific kinetic energy scales exponentially with technologyEl

With these assumptions, I can write the scaling relation like:

2
Specific Kinetic Energy = K/m x ¢*T = <—> e (8)

3.1 Non-Relatavistic Kinetic Energy

In this case, kinetic energy is given by:

3the factor of two helps clean up the solutions



Thus, specific Kinetic Energy is:

K/m= v—Q = (1}(2)) e
2 2

Solving for v and taking the positive solution yields our equation for non-relativstic probe velocity as a function of
technology:

o(T) =vg el

3.2 Relativistic Kinetic Energy

In this case, kinetic energy is given by:

—mc2 1 _
K =mq ( T—(0/0? 1) 9)

Thus, specific relativistic kinetic energy is:

o= (e =) = (3) o

Solving for v and taking the positive solution yields our equation for non-relativistic probe velocity as a function of

technology:
cvoeT /42 + (vpeT)?
iy = 0T V16 + e "

262 + (vgeT)?

v(T) = Probe Velocity

o T = Technology

c = Speed of Light =2.99 * 10*° cm/s

o vg=Approximate Initial Probe Velocity, assuming an initially non-relativistic kinetic energy
(ie: v(0) = v iff vy << )

4 Probe Range (r(7T")) as Function of Technology (7)

We can derive the equation for probe range directly from our previously derived expression for relativistic velocity.
We want the only relevant input parameter here to be the maximum time a probe can spend in space, which we
can call the proper time ty. If we call the probes velocity v and we define:

1
T i (wjer

then from relativity it follows that the dilated time a probe will be in space as observed on the planet which sent
this probe out will be:

(12)

t=toy (13)

Additionally, if as observed from this planet the destination of the probe is a distance rg away, then in the frame
of the probe the contracted distance to destination is given by:

To
r=— 14
S (14)



We proceed by solving for gamma in the above two equations and equating;:

To t
=TTy (15)
So solving for the contracted probe range yields:
r=n(?) ()

Finally, the last step is to notice that ro/t is the distance the probe travelled over the time it took to travel that in
the frame of planet which sent the probe out, thus this is the same as our velocity calculated in equation Thus,
our final probe range as a function of technology becomes:

cvoel\/4e? + (vpeT)?
’I"(T) = to’U(T) =1p

22 + (vgeT)?

e v(T) is the probe velocity as shown in equation

e 1y is the maximum time a probe can stay in space

4.1 Example: ty = 100yr, vg = 0.0lc = rg = voto = llyr

If we assume that initially, when T' = 0, that probes have velocities approximately 1% the speed of light and the
maximum time that a probe can stay in space is 100 years then ¢ty = 100yr and vg = 0.0lc. Additionally, for
simplicity I let ¢ = yr = 1. In this case the plots for »(T") and v(T) are shown below.
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5 Next Steps

1. Implement all of this in the actual fortran model. All of the above was modeled using python in order to play
around with different ideas.

2. Determine what additional parameters we want to have normally distributed.
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