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1 Introduction

Goal: make the probe range and velocity normally distributed.
Method: Add a local variable called technology to the program, use random walks to have technology be normally
distributed around the technological capabilities of the abiogenesis seed. Then make probe range and velocity
functions of this new technology variable.

2 Technology

2.1 Ornstein-Uhlenbeck (OU) Process

We use an Ornstein-Uhlenbeck1 process to calculate the random walk for technology:

dxt = θ(µ− xt)dt+ σdWt (1)

µ is the location that everything will eventually end up at. If µ = 0, then their is an restoring force towards the
origin, that increases with increased distance from the origin. The higher θ is, the quicker µ is reached.2

xt = x0e
−θt + µ(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs (2)

1https://en.wikipedia.org/wiki/Ornstein-Uhlenbeck process
2We have used the change of variables: s = e2θt
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x0 is the initial location. It follows that the first moment, or mean of xt is given by:

E[x(t)] = x(t) = x0e
−θt + µ(1− e−θt) (3)

It can similarly be shown that:

Cov[x(t), x(s)] =
σ2

2θ

(
e−θ|t−s| − e−θ|t+s|

)
(4)

It follows that:

V ar[x(t)] = Cov[x(t), x(t)] =
σ2

2θ
(1− e−2θt) (5)

2.1.1 Long-Term Gaussian Behavior (t >> 1)

E[x(t >> 1)] = µ (6)

V ar[x(t >> 1)] =
σ2

2θ
(7)

2.2 Euler-Maruyama Method

We can use a numerical method called the Euler-Maruyama method to simulate the OU process.

num_seeds = 1000

ti = 0 #initial time

tf = 100 #final time

N = 1000 #number of time steps

#Technology (T)

iTech = 0 #value to start from

mu = 0 #value to converge to

sigma = 0.05 #randomness; directly proportional to width of gaussian

theta = 1 #rate of convergence; inversely proportional to width of gaussian

#Initialize

dt = float(tf-ti)/N #length of each time step

timeList = np.arange(ti, tf, dt)

techList = np.zeros(N)

techList[0] = iTech #all seeds have the same initial values

fTechList = [] #final value of technology

#Calculate Numerically

fig, (ax1,ax2) = plt.subplots(figsize=(15,5.5), nrows=2, ncols=1)

for _ in range(num_seeds):

for i in range(1, len(timeList)): #i starts at 1

t = (i-1) * dt #current time

tech = techList[i-1] #current technology value

dW = np.random.normal(0, np.sqrt(dt)) #Gaussian Noise (mean=0, stdev=sqrt(dt))

push = sigma * dW #displacing force

pull = theta*(mu-tech)*dt #restoring force

techList[i] = tech + push + pull #next position

fTechList.append(techList[-1]) #array keeping track of final values

#Plot Each Run

ax1.plot(timeList, techList, alpha=.5)

ax1.set(xlabel=’t’, ylabel=’T’)

#Calculate Analytically using a Guassian

mean = mu #mean value for large t

stdev = sigma/np.sqrt(2*theta) #width as a normal gaussain

t = np.linspace(min(fTechList), max(fTechList),n)
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techListAnalytic = gaussian(t, mu= mean, sigma=stdev)

#Plot Full Output

ax2.hist(fTechList, bins=20,density=True, label=fr’Numerical ($\,\sigma_T = {np.std(fTechList):.3f}$)’)

#Numerically Calculated

ax2.plot(t, techListAnalytic, label=fr’Analytical’, linewidth=3) # Analytically Calculated

ax2.set(xlabel=r’$T_{final}$’, ylabel=’Frequency’)

ax2.legend();

fig.suptitle(f"{num_seeds} Seeds Ran for {N} Time Steps of Length dt={dt:.2f}");

fig.subplots_adjust(top=0.92, hspace=.3)

fig.savefig("OUProcess.png")

3 Probe Velocity (v(T )) as Function of Technology (T )

So general idea here is that total (specific) kinetic energy will scale with technology, then solving for velocity will
give v(T ). Since the units of specific kinetic energy are the same as velocity squared, we can write the constant of
proportionality in terms of the (approximate) initial probe velocity. I now make the following assumptions:

1. Technology starts from T = 0

2. When T = 0, the initial probe velocity is v(0) ≡ v0 and v0 << c. Thus, when technology is zero, kinetic
energy is purely non-relativistic (K = 1

2mv
2).

3. Specific kinetic energy scales exponentially with technology.3

With these assumptions, I can write the scaling relation like:

Specific Kinetic Energy ≡ K/m ∝ e2T =

(
v20
2

)
e2T (8)

3.1 Non-Relatavistic Kinetic Energy

In this case, kinetic energy is given by:

K =
1

2
mv2

3the factor of two helps clean up the solutions
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Thus, specific Kinetic Energy is:

K/m =
v2

2
=

(
v20
2

)
e2T

Solving for v and taking the positive solution yields our equation for non-relativstic probe velocity as a function of
technology:

v(T ) = v0 e
T

3.2 Relativistic Kinetic Energy

In this case, kinetic energy is given by:

K = m0c
2

(
1√

1− (v/c)2
− 1

)
(9)

Thus, specific relativistic kinetic energy is:

K/m0 = c2

(
1√

1− (v/c)2
− 1

)
=

(
v20
2

)
e2T (10)

Solving for v and taking the positive solution yields our equation for non-relativistic probe velocity as a function of
technology:

v(T ) =
cv0e

T

√
4c2 + (v0eT )

2

2c2 + (v0eT )
2 (11)

• v(T ) = Probe V elocity

• T = Technology

• c = Speed of Light = 2.99 ∗ 1010 cm/s

• v0=Approximate Initial Probe Velocity, assuming an initially non-relativistic kinetic energy

(ie: v(0) = v0 iff v0 << c)

4 Probe Range (r(T )) as Function of Technology (T )

The expression we are after in this section is a function for the proper probe range as measured from the
planet which is sending out the probe, which we can call r(T ). We want this to be a function of the probes
velocity (calculated in the previous section) and the maximum time a probe can be in space as measured
on the probe itself, which we can call the proper time t0.

For a person on the probe, the distance to their destination is contracted as the probes velocity approaches the
speed of light; thus we call this contracted probe range as measured from the probe R(T ). If we call the probes
velocity v and we define:

γ =
1√

1− (v/c)2
(12)

then it follows that the contracted probe range as measured by someone on the probe is given by this
equation for relativistic length contraction:

R(T ) =
r(T )

γ
= Contracted Probe Range (13)
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If we are on the probe, the maximum time we can stay alive in this probe is t0 and the distance to our next
destination is given by the contracted probe length R(T ), thus it follows that we will calculate our probes velocity
to be:

v(T ) =
R(T )

t0
=
r(t)

γt0
(14)

Finally, solving for the proper probe range r(T ) yields our desired expression:

r(T ) = γt0v(T ) =
v(T )t0√

1−
(
v(T )
c

)2 (15)

• v(T ) is the probes velocity as shown in equation 11

• t0 is the maximum time a probe can stay in space (ie: probes lifetime)

5 Example: t0 = 106yr, v0 = 0.001c =⇒ r0 ≈ v0t0 = 1, 000 lyr

If we assume that initially, when T = 0, that probes have velocities approximately .1% the speed of light and the
maximum time that a probe can stay in space is 1 million years then t0 = 106yr and v0 = 0.001c. Additionally, for
simplicity I let c = yr = 1. The plots for v(T ) and r(T ) are shown below.

5.1 Results: Ran For 1 Billion years

• θ = 1 = Rate of Convergence; inversely proportional to the Gaussian’s width

• σ = 0.05 = Degree of Randomness; directly proportional to the Gaussian’s width

• v0 = 10−3c = Probe’s Velocity

• t0 = 106yr = Probe’s Lifetime
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6 Next Steps

1. Add relativistic corrections to the probe intercept time functionality.

2. Setup three breeds (thin disk, thick disk, halo stars), assign each different constant values

3. Determine what additional parameters we want to have normally distributed.
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