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1 Overview of Model

1.1 Variables, Constants and Units

• T = Average Global Temperature (Kelvin)

– Teq = Equilibrium (initial) Temperature, calculated with the energy balance model (Kelvin)

– ∆T = Temperature Range in which humans can survive (higher values correspond to lower fragility)

– D = Orbital Distance (AU)

• P = Global Carbon Dioxide Partial Pressures (ppm)

– P0 = Initial Carbon Dioxide Partial Pressures1 (ppm)

– ε = Annual Per-Capita2 Carbon Footprint ( ppm
106ppl∗yr )

– ∆P = A proportionality factor between the birth rate and changes in pCO2. (higher values correspond to less
technologically efficient civilizations, ie: must burn more fossil fuels in order to increase the birth rate)

• N = Global Population (×106 ppl)

– N0 = Initial Global Population (×106 ppl)

– Nmax = Maximum Allowed Global Population (×106 ppl)

– αbirth,0/αdeath,0 = Initial Per-Capita2 Birth/Death Rates (1/yr)

– αbirth/αdeath = Current Per-Capita2 Birth/Death Rates (1/yr)

1x ppm ∗
(

1Bar
106ppm

)
= y bar

2Per-Capita Meaning Per-Million People
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1.2 Dimensionless Parameter (Γ)

First, we define the timescales:

tgrowth =
1

αbirth,0
(1)

tclimate =
∆T

εNmax
dT
dP

(2)

Then we can write our dimensionless parameter like:

Γ =
tgrowth
tclimate

=
εNmax

dT
dP

αbirth∆T
=

Timescale for Population Growth

Timescale for Climate to Change
(3)

• Γ << 1 =⇒ Climate will change on timescales much longer than the average generation. Corresponds to a civilization
having a low risk for an Anthropocene.

• Γ = 1 =⇒ Climate will change within one generation.

• Γ >> 1 =⇒ Climate will change on timescales much shorter than the average generation. Corresponds to a civilization
having a high risk for an Anthropocene.

1.3 Outline of Coupled Model

First, let the energy balance model reach an equilibrium between incoming and outgoing radiation, this gives us the equilibrium
temperature. The model continues by setting the initial temperature to this equilibrium value, as well as setting the birth and
death rates to their initial values. The main loop now begins, where each loop represents one year.3

i) Call4:
dT

dt
= EBM(P )

ii) αbirth = αbirth,0

[
1 +

P − P0

∆P

]

iii) αdeath = αdeath,0

[
1 +

(
T − Teq

∆T

)2
]

iv) Call:
dN

dt
= min(αbirthN, αdeath,0Nmax)− αdeathN

• If dNdt > 0: set variable peakTime = currentTime

• If dNdt < 0: set variable peaked = True

v) Call:
dP

dt
= εN

a) If (peaked=True) and ( currentTime - peakTime ≥ 500), then end program5

b) Else, go back to the first step.

1.4 Example: Modeling Earth (t0 = 1820, P0 = 284, N0 = 1, 129)

1.4.1 Input Values

• Nmax = 10 billion people

• αbirth,0 = 0.04 yr−1

• αdeath,0 = 0.036 yr−1

• ∆T = 5K

• ∆P = 200 ppm

• ε = 0.000275 ppm
106ppl∗yr

3Note: made population have a minimum of 1 million people, to avoid values of 10−100

4EBM(P ) =
ψ(1−A)− I +∇ · (κ∇T )

Cv
5Run for 20 generations after the population has peaked, where a generation is defined as tgen ≈ tgrowth = 1

αbirth,0
= 25 years
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1.4.2 Output Plots

Figure 1: Model Output (solid black line) vs Real Global Data (dotted line)

Figure 2: Model Output for 2000 Years
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2 Experiment #1: Constant Composition (P0 = 284 ppm = 2.84× 10−4 bar)

2.1 Habitable Zone

In this experiment, we define the habitable zone by the range of distances that will result in temperatures above freezing and
below boiling.6

273.15 K < Thabitable < 373.15 K (4)

0.94 AU < ahabitable < 1.02 AU (5)

2.2 Linear Regressions of Temp vs pCO2

For 5 different distances, I first ran the model, uncoupled, with initial pCO2 = 284ppm. The resultant equilibrium temperature
for this pCO2 is saved as a variable called initialTemp. I then decremented the initial pCO2 by 5ppm and re-ran the model
until the absolute value of the difference between the equilibrium temperature and the initial temperature was greater than 2. I
then set the initial pCO2 back to 284ppm, and continued by incrementing the initial pCO2 by 5ppm and re-running the model
until the absolute value of the difference between the equilibrium temperature and the initial temperature was greater than 2.
At this point, I changed distances and repeated the same process. After all distances have been looped, I ran a linear regression
(using scipy.stats.linregress) for the data from each distance to find the relationship between changes in pCO2 and changes in
global temperature.7

T = 6.178 ∗ 10−2
(

P

ppm

)
+ 322 (0.94 AU)

T = 1.655 ∗ 10−2
(

P

ppm

)
+ 309 (0.96 AU)

T = 1.044 ∗ 10−2
(

P

ppm

)
+ 296 (0.98 AU)

T = 8.838 ∗ 10−3
(

P

ppm

)
+ 284 (1.0 AU)

T = 9.067 ∗ 10−3
(

P

ppm

)
+ 273 (1.02 AU)

6The lower limit on distance is restricted by our model, which fails to converge when the initial temperature is at or above 330K
7For 1.04AU, I couldn’t go 2 degrees above or else it would jump, so I did 1 degree on either side.
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3 Experiment #2: Constant Temperature (Teq = 287.09K = 57.09 oF )

3.1 Habitable Zone

In this experiment, we define the habitable zone by the range of distances that have temperatures approximately equal to the
equilibrium temperature for our current planet, 287.09K, with corresponding pCO2′s greater than 10ppm and less than 105ppm.
(Which corresponds to an atmosphere that is composed of 10% CO2).8. The way I found this zone was by first setting the
initial pco2 to 10ppm and the distance to 1AU , then continually decrementing the distance by 0.001AU until the temperature
was greater or equal to 287.09, the distance for which this occurs is the minimum distance. I then set the initial pco2 to 105ppm
and the distance to 1AU , and continually incremented the distance by 0.001AU until the temperature was less than or equal to
287.09, the distance for which this occurs is the maximum distance.

10 ppm < pCO2habitable < 105 ppm (6)

0.97 AU < ahabitable < 1.10 AU (7)

3.2 Linear Regressions of Temp vs pCO2

Note: I am going to redo these do mirror the procedure for constant composition. First, I will find the value of pCO2 for that
makes the planets temp around 287K, then I will decrement pCO2 distance from 278K is 2 degrees, and repeat for incrementing.

For 7 different distances, I first found the value of pCO2 which would make that planet’s temp be around room temperature,
fixing this value as the initial temp for this distance. Then made a loop in which initially the EBM is run with this value of
pCO2, but after every loop I incremented this value slightly, then exited the loop once the equilibrium temperature became
greater than 10 degrees higher than the initial temperature. After all distances have been looped, I ran a linear regression (using
scipy.stats.linregress) for the data from each distance to find the relationship between changes in pCO2 and changes in global
temperature.

T = 3.573 ∗ 10−2
(

P

ppm

)
+ 298 (0.970 AU)

T = 1.861 ∗ 10−3
(

P

ppm

)
+ 290 (1.0025 AU)

T = 4.297 ∗ 10−4
(

P

ppm

)
+ 285 (1.035 AU)

T = 1.464 ∗ 10−4
(

P

ppm

)
+ 287 (1.0675 AU)

T = 8.629 ∗ 10−5
(

P

ppm

)
+ 284 (1.1 AU)

8The minimum allowed value for pCO2 in our EBM is 10ppm
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4 Analytic Model

With natural birth rate A, natural death rate B, per capita emission rate C, and temperature-CO2 climate sensitivity D, birth
rate temperature sensitivity ∆T , CO2 emission birth rate advantage range ∆P , and carrying capacity Nmax we can model the
population N , CO2 concentration P , and temperature T using

dN

dt
= min

[
AN

(
1 +

P − P0

∆P

)
, BNmax

]
−BN −AN

(
T − T0

∆T

)2

(8)

dP

dt
= CN (9)

dT

dt
=

dT

dP

dP

dt
= D(T )CN (10)

(11)

where

D(T ) =
dT

dP
(12)

(13)

If we assume that the climate sensitivity is constant, then we have

T = T0 +D (P − P0) (14)

This allows us to reduce the system of equations to

dN

dt
= min

[
AN

(
1 +

T − T0
D∆P

)
, BNmax

]
−BN −AN

(
T − T0

∆T

)2

(15)

dT

dt
= DCN (16)

(17)

Now dividing both equations by A, and the first equation by Nmax and the second equation by ∆T we arrive at

dη

dτ
= min [η (1 + θε) , β]− βη − ε2η (18)

dε

dτ
= γη (19)

(20)

where

η =
N

Nmax
Normalized population (21)

τ = A0t Normalized time (22)

β =
B

A0
Normalized natural death rate (23)

ε =
T − T0

∆T
Normalized temperature (24)

θ =
∆T

D∆P
Normalized Birth rate acceleration (25)

γ =
DCNmax

A∆T
Normalized forcing (26)

Note that in the absence of any means to reduce the CO2 in the atmosphere - and therefore the temperature, there is no
equilibrium for the temperature except for the trivial one η = 0.

Now because of the min function, the population will peak in one of two scenarios.
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First, if the population growth rate never exceeds the maximum growth rate, then we have

dη

dτ
=
(
1 + θε− β − ε2

)
η = 0→ ε =

θ

2
+

√(
θ

2

)2

+ (1− β) (27)

On the other hand, if the forcing γ is small, the population can reach the maximum growth rate at

dη

dτ
= β − βη − ε2η = 0→ ε =

√
β (1− η)

η
(28)

Now it is helpful to look at the second derivative of the population evaluated at these peaks to determine how quickly the
population declines.

In the first case, we have

d2η

dτ
= θη

dε

dτ
− 2ηε

dε

dτ
= θγη2 − θγη2 − η

√
θ2 + (1− β) = −η

√
θ2 + (1− β) (29)

Now the time scale for the population to decrease is less then the natural growth time

− η
dη2

dτ

=
1

θ2 + (1− β)
<

1

1− β
(30)

So the collapse will be at least as fast as the growth - and will only accelerate as the temperature continues to increase. But
the collapse occurs on the order of a generation.

Now in the second case, if the population can reach the maximum growth rate, then we have

d2η

dτ
= −2εγη2 = −2γη2

√
β (1− η)

η
(31)

and the timescale for the population to decline is

− η
dη2

dτ

=
1

2γη
√

β(1−η)
η

(32)

which can be quite large for η ≈ 1 or go as 1
γ
√
β

for η = 1
2
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