Relativistic Quantum Mechanics
 Homework 1 (solution)

September 23, 2007

1
Consider the Klein-Gordon equation in the presence of a static Coulomb barrier (minimal coupling),

$$
\begin{equation*}
\left(\square+m^{2}+2 i e \phi \frac{\partial}{\partial t}-e^{2} \phi^{2}\right) \Psi(x)=0 \tag{1}
\end{equation*}
$$

where

$$
\phi= \begin{cases}0 & \text { if } z \leq 0 \tag{2}\\ \phi_{0} & \text { if } z \geq 0\end{cases}
$$

Minimal coupling states:

$$
\begin{array}{r}
-i \vec{\nabla} \rightarrow-i \vec{\nabla}+e \mathbf{A} \\
i \frac{\partial}{\partial t} \rightarrow i \frac{\partial}{\partial t}-e \phi \tag{4}
\end{array}
$$

$\rho(x)$ for $z \geq 0$ becomes:

$$
\begin{equation*}
\rho:=\frac{i}{2 m}\left[\Psi^{*} \frac{\partial}{\partial t} \Psi-\Psi \frac{\partial}{\partial t} \Psi^{*}+2 i e \phi \Psi^{*} \Psi\right], \tag{5}
\end{equation*}
$$

For $z \leq 0$ we have:

$$
\begin{equation*}
\Psi_{I}(z, t)=e^{-i(\omega t-k z)}+R e^{-i(\omega t+k z)} \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
\rho_{I} & =\frac{i}{2 m}\left(\Psi_{I}^{*} \frac{\partial \Psi_{I}}{\partial t}-\Psi_{I} \frac{\partial \Psi_{I}^{*}}{\partial t}\right) \\
& =\frac{i}{2 m}\left(-i \omega \Psi_{I}^{*} \Psi_{I}-i \omega \Psi_{I} \Psi_{I}^{*}\right)=\frac{\omega}{m}\left|\Psi_{I}\right|^{2} \geq 0 \tag{7}
\end{align*}
$$

For $z \geq 0$ we have:

$$
\begin{equation*}
\Psi_{I I}(z, t)=T e^{-i\left(\omega t-k^{\prime} z\right)} \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\rho_{I I} & =\frac{i}{2 m}\left(\Psi_{I I}^{*} \frac{\partial \Psi_{I I}}{\partial t}-\Psi_{I I} \frac{\partial \Psi_{I I}^{*}}{\partial t}+2 i e \phi \Psi_{I I}^{*} \Psi_{I I}\right) \\
& =\frac{i}{2 m}\left(-i \omega|T|^{2}-i \omega|T|^{2}+2 i e \phi_{0}|T|^{2}\right)=\frac{|T|^{2}}{m}\left(\omega-e \phi_{0}\right) \leq 0 \tag{9}
\end{align*}
$$

since $e \phi_{0}>\omega+m \stackrel{m>0}{\Rightarrow} \omega-e \phi_{0}<0$.

2 ($\mathrm{T}_{\mathrm{E}} \mathrm{Xing}$ by Andreas Liapis)

Using the fact that the set that includes the identity and the three Pauli matrices is a complete basis set for the 2×2 matrix space, we can expand any arbitrary 2×2 matrix A as

$$
\begin{equation*}
A=\sum_{0}^{3} \alpha_{i} \sigma_{i} \quad ; \quad \sigma_{i}=\mathbf{1}, \hat{\sigma}_{1}, \hat{\sigma}_{2}, \hat{\sigma}_{3} \tag{10}
\end{equation*}
$$

where α_{i} are C-numbers.

2.1

Assume there exists a 2×2 matrix A that commutes with all three Pauli matrices:

$$
\begin{equation*}
\left[A, \sigma_{i}\right]=0 \quad ; \quad i=0,1,2,3 \tag{11}
\end{equation*}
$$

Using the expansion (10) we can express this condition as: (recall that the Pauli matrices obey the cyclic commutation relation $\left.\left[\hat{\sigma}_{i}, \hat{\sigma}_{j}\right]=2 i \epsilon_{i j k} \hat{\sigma}_{k}\right)$

$$
\begin{align*}
& {\left[A, \hat{\sigma}_{1}\right]=\sum_{0}^{3} \alpha_{i}\left[\sigma_{i}, \hat{\sigma}_{1}\right]=-2 i \alpha_{2} \hat{\sigma}_{3}+2 i \alpha_{3} \hat{\sigma}_{2}=0} \tag{12a}\\
& {\left[A, \hat{\sigma}_{2}\right]=\sum_{0}^{3} \alpha_{i}\left[\sigma_{i}, \hat{\sigma}_{2}\right]=+2 i \alpha_{1} \hat{\sigma}_{3}-2 i \alpha_{3} \hat{\sigma}_{1}=0} \tag{12b}\\
& {\left[A, \hat{\sigma}_{3}\right]=\sum_{0}^{3} \alpha_{i}\left[\sigma_{i}, \hat{\sigma}_{3}\right]=-2 i \alpha_{1} \hat{\sigma}_{2}+2 i \alpha_{2} \hat{\sigma}_{1}=0} \tag{12c}
\end{align*}
$$

From these it is immediately obvious ${ }^{1}$ that, for the commutation requirement (11) to hold, the expansion coefficients involved in the above expressions have to vanish:

$$
\begin{equation*}
\alpha_{i}=0 \quad ; \quad i=1,2,3 \tag{13}
\end{equation*}
$$

We are therefore left with:

$$
\begin{equation*}
A=\alpha_{0} \mathbf{1} \tag{14}
\end{equation*}
$$

2.2

Assume there exists a 2×2 matrix B that anti-commutes with all three Pauli matrices:

$$
\begin{equation*}
\left[B, \hat{\sigma}_{i}\right]_{+}=0 \quad ; \quad i=1,2,3 \tag{15}
\end{equation*}
$$

Following the same procedure as in the previous section, we express this condition as: (recall that the anti-commutator of Pauli matrices is twice the identity: $\left.\left[\hat{\sigma}_{i}, \hat{\sigma}_{i}\right]_{+}=2 \hat{\sigma}_{i}^{2}=2 \cdot \mathbf{1}\right)$

$$
\begin{align*}
& {\left[B, \hat{\sigma}_{1}\right]=2 \beta_{0} \hat{\sigma}_{1}+2 \beta_{1} \mathbf{1}=0 \quad \rightarrow \quad \beta_{0}=\beta_{1}=0,} \tag{16a}\\
& {\left[B, \hat{\sigma}_{2}\right]=2 \beta_{0} \hat{\sigma}_{2}+2 \beta_{2} \mathbf{1}=0 \quad \rightarrow \quad \beta_{0}=\beta_{2}=0,} \tag{16b}\\
& {\left[B, \hat{\sigma}_{3}\right]=2 \beta_{0} \hat{\sigma}_{3}+2 \beta_{3} \mathbf{1}=0 \quad \rightarrow \quad \beta_{0}=\beta_{3}=0 .} \tag{16c}
\end{align*}
$$

[^0]Therefore only the null matrix anti-commutes with all three Pauli matrices and, as a result, finding four anti-commuting 2×2 matrices is impossible.

3 (help with T_{E} Xing from Andreas Liapis)

3.1

We wish to obtain plane wave solutions to the Dirac equation with an arbitrary wavevector; We begin with the Dirac equation in the coordinate representation,

$$
\begin{equation*}
(i \not \partial-m) \Psi=0 \tag{17}
\end{equation*}
$$

for which we postulate solutions of the form

$$
\begin{equation*}
\Psi(x)=u(k) e^{-k \cdot x} \tag{18}
\end{equation*}
$$

The eigenvalues of (17) are obtained from:

$$
\begin{equation*}
\operatorname{det}\left(\gamma^{0} k_{0}-\gamma^{i} k_{i}-m\right)=0 \Rightarrow k_{0}= \pm \sqrt{\mathbf{k}^{2}+m^{2}}=\omega_{ \pm} \tag{19}
\end{equation*}
$$

where

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbf{1} & 0 \tag{20}\\
0 & -\mathbf{1}
\end{array}\right) \quad ; \quad \gamma=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
-\boldsymbol{\sigma} & 0
\end{array}\right)
$$

Note that

$$
\gamma \cdot \mathbf{k}=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \cdot \mathbf{k} \tag{21}\\
-\boldsymbol{\sigma} \cdot \mathbf{k} & 0
\end{array}\right)
$$

The amplitude of the plane wave must obey

$$
\begin{equation*}
(\not k-m) u(k)=0 . \tag{22}
\end{equation*}
$$

We can write equation (22) as

$$
\left(\begin{array}{cc}
\mathbf{1}\left(k_{0}-m\right) & -\boldsymbol{\sigma} \cdot \mathbf{k} \tag{23}\\
\boldsymbol{\sigma} \cdot \mathbf{k} & -\mathbf{1}\left(k_{0}+m\right)
\end{array}\right) u(k)=0
$$

We now express the four-component vector $u(k)$ as a pair of two-component vectors \tilde{u} and \tilde{v}.

$$
\begin{equation*}
u(k)=\binom{\tilde{u}(k)}{\tilde{v}(k)} \tag{24}
\end{equation*}
$$

Equation (23) is then reduced to a pair of equations relating these two-component vectors. If we choose the positive energy solution $k_{0}=\omega_{+}$, we find

$$
\left(\begin{array}{cc}
\mathbf{1}\left(\omega_{+}-m\right) & -\boldsymbol{\sigma} \cdot \mathbf{k} \tag{25}\\
\boldsymbol{\sigma} \cdot \mathbf{k} & -\mathbf{1}\left(\omega_{+}+m\right)
\end{array}\right)\binom{\tilde{u}(k)}{\tilde{v}(k)}=0
$$

In this case, \tilde{u} is the independent quantity, so we wish to solve for \tilde{v}. From the second equation, we find that

$$
\begin{equation*}
\tilde{v}(k)=\frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega_{+}+m} \tilde{u}(k)=\frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m} \tilde{u}(k) . \tag{26}
\end{equation*}
$$

Similarly, if we chose the negative energy solution, $k_{0}=\omega_{-}$we would find

$$
\left(\begin{array}{cc}
\mathbf{1}\left(\omega_{-}-m\right) & -\boldsymbol{\sigma} \cdot \mathbf{k} \tag{27}\\
\boldsymbol{\sigma} \cdot \mathbf{k} & -\mathbf{1}\left(\omega_{-}+m\right)
\end{array}\right)\binom{\tilde{u}(k)}{\tilde{v}(k)}=0 .
$$

This time, it is \tilde{v} that is the independent quantity, and solving the first equation gives:

$$
\begin{equation*}
\tilde{u}(k)=\frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega_{-}-m} \tilde{v}(k)=-\frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m} \tilde{v}(k) \tag{28}
\end{equation*}
$$

3.2

We wish to confirm that the states obtained above are eigenstates of the Hamiltonian

$$
\begin{equation*}
H=\boldsymbol{\alpha} \cdot \mathbf{p}+\beta m \tag{29}
\end{equation*}
$$

Consider the positive energy solution first.

$$
\begin{align*}
H \Psi & =\boldsymbol{\alpha} \cdot i \vec{\nabla} \Psi+\beta m \Psi \tag{30a}\\
& =\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \\
-\boldsymbol{\sigma} & 0
\end{array}\right) \cdot i(i \mathbf{k}) \Psi+\left(\begin{array}{cc}
m \mathbf{1} & 0 \\
0 & -m \mathbf{1}
\end{array}\right) \Psi \tag{30b}\\
& =\left(\begin{array}{cc}
m \mathbf{1} & -\boldsymbol{\sigma} \cdot \mathbf{k} \\
\boldsymbol{\sigma} \cdot \mathbf{k} & -m \mathbf{1}
\end{array}\right) \Psi \tag{30c}\\
& =\left(\begin{array}{cc}
m \mathbf{1} & -\boldsymbol{\sigma} \cdot \mathbf{k} \\
\boldsymbol{\sigma} \cdot \mathbf{k} & -m \mathbf{1}
\end{array}\right)\binom{\tilde{u}}{\tilde{u} \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}} e^{i k \cdot x} \tag{30d}\\
& =\binom{m \mathbf{1}-\boldsymbol{\sigma} \cdot \mathbf{k} \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}}{\boldsymbol{\sigma} \cdot \mathbf{k}-m \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}} \tilde{u} e^{i k \cdot x} \tag{30e}\\
& =\binom{m \mathbf{1}-\mathbf{k}^{2} \frac{1}{\omega+m}}{\boldsymbol{\sigma} \cdot \mathbf{k}\left(1-m \frac{1}{\omega+m}\right.} \tilde{u} e^{i k \cdot x} \tag{30f}\\
& =\left(\begin{array}{c}
\mathbf{1} \omega \\
\boldsymbol{\sigma} \cdot \mathbf{k} \\
\omega+m
\end{array}\right) \tilde{u} e^{i k \cdot x} \tag{30~g}\\
& =\omega\binom{\tilde{u}}{\tilde{u} \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}} e^{i k \cdot x} \tag{30h}
\end{align*}
$$

Here we have made use of the fact that $\mathbf{k}^{2}=\omega^{2}-m^{2}$ as well as the identity ${ }^{2}$ $(\boldsymbol{\sigma} \cdot \mathbf{k})^{2}=\mathbf{k}^{2}+i \boldsymbol{\sigma} \cdot(\mathbf{k} \times \mathbf{k})=\mathbf{k}^{2}$. We see that Ψ_{+}is indeed an eigenstate of H with eigenvalue ω. For the negative energy solution we start from equation (30c):

$$
\begin{align*}
H \Psi & =\left(\begin{array}{cc}
m \mathbf{1} & -\boldsymbol{\sigma} \cdot \mathbf{k} \\
\boldsymbol{\sigma} \cdot \mathbf{k} & -m \mathbf{1}
\end{array}\right)\binom{-\frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m} \tilde{v}}{\tilde{v}} e^{i k \cdot x} \tag{31a}\\
& =\binom{-m \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}-\boldsymbol{\sigma} \cdot \mathbf{k}}{\boldsymbol{\sigma} \cdot \mathbf{k} \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}-m \mathbf{1}} \tilde{v} e^{i k \cdot x} \tag{31~b}\\
& =\binom{-m \frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}-\boldsymbol{\sigma} \cdot \mathbf{k}}{\mathbf{k}^{2} \frac{1}{\omega+m}-m \mathbf{1}} \tilde{v} e^{i k \cdot x} \tag{31c}\\
& =-\omega\binom{-\frac{\boldsymbol{\sigma} \cdot \mathbf{k}}{\omega+m}}{\tilde{v}} e^{i k \cdot x} \tag{31d}
\end{align*}
$$

[^1]We therefore confirm that Ψ_{-}is an eigenstate of H with eigenvalue $-\omega$.

[^0]: ${ }^{1}$ Since the Pauli matrices are orthogonal to each-other, there exists no C-number α such that $\alpha \sigma_{i}=\sigma_{j}$.

[^1]: ${ }^{2}$ This can easily be derived from the commutation relation of the Pauli matrices: $\hat{\sigma}_{i} \hat{\sigma}_{j}=$ $\mathbf{1} \delta_{i j}+\varepsilon_{i j k} i \hat{\sigma}_{k}$

