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Consider the Klein-Gordon equation in the presence of a static Coulomb barrier
(minimal coupling),(

� + m2 + 2ieφ
∂

∂t
− e2φ2

)
Ψ(x) = 0, (1)

where

φ =

{
0 if z ≤ 0,

φ0 if z ≥ 0.
(2)

Minimal coupling states:

−i
−→
∇ → −i

−→
∇ + eA (3)

i
∂

∂t
→ i

∂

∂t
− eφ (4)

ρ(x) for z ≥ 0 becomes:

ρ :=
i

2m

[
Ψ∗ ∂

∂t
Ψ−Ψ

∂

∂t
Ψ∗ + 2ieφΨ∗Ψ

]
, (5)

For z ≤ 0 we have:

ΨI(z, t) = e−i(ωt−kz) + Re−i(ωt+kz) (6)

and

ρI =
i

2m
(Ψ∗

I

∂ΨI

∂t
−ΨI

∂Ψ∗
I

∂t
)

=
i

2m
(−iωΨ∗

IΨI − iωΨIΨ∗
I) =

ω

m
|ΨI |2 ≥ 0 (7)

For z ≥ 0 we have:
ΨII(z, t) = Te−i(ωt−k′z) (8)

and

ρII =
i

2m
(Ψ∗

II

∂ΨII

∂t
−ΨII

∂Ψ∗
II

∂t
+ 2ieφΨ∗

IIΨII)

=
i

2m
(−iω|T |2 − iω|T |2 + 2ieφ0|T |2) =

|T |2

m
(ω − eφ0) ≤ 0 (9)

since eφ0 > ω + m
m>0⇒ ω − eφ0 < 0.
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2 (TEXing by Andreas Liapis)

Using the fact that the set that includes the identity and the three Pauli matrices
is a complete basis set for the 2× 2 matrix space, we can expand any arbitrary
2× 2 matrix A as

A =
3∑
0

αiσi ; σi = 1, σ̂1, σ̂2, σ̂3, (10)

where αi are C-numbers.

2.1

Assume there exists a 2 × 2 matrix A that commutes with all three Pauli ma-
trices:

[A, σi] = 0 ; i = 0, 1, 2, 3. (11)

Using the expansion (10) we can express this condition as: (recall that the Pauli
matrices obey the cyclic commutation relation [σ̂i, σ̂j ] = 2iεijkσ̂k)

[A, σ̂1] =
3∑
0

αi[σi, σ̂1] = −2iα2σ̂3 + 2iα3σ̂2 = 0, (12a)

[A, σ̂2] =
3∑
0

αi[σi, σ̂2] = +2iα1σ̂3 − 2iα3σ̂1 = 0, (12b)

[A, σ̂3] =
3∑
0

αi[σi, σ̂3] = −2iα1σ̂2 + 2iα2σ̂1 = 0. (12c)

From these it is immediately obvious1 that, for the commutation requirement
(11) to hold, the expansion coefficients involved in the above expressions have
to vanish:

αi = 0 ; i = 1, 2, 3. (13)

We are therefore left with:
A = α01. (14)

2.2

Assume there exists a 2 × 2 matrix B that anti-commutes with all three Pauli
matrices:

[B, σ̂i]+ = 0 ; i = 1, 2, 3. (15)

Following the same procedure as in the previous section, we express this condi-
tion as: (recall that the anti-commutator of Pauli matrices is twice the identity:
[σ̂i, σ̂i]+ = 2σ̂2

i = 2 · 1)

[B, σ̂1] = 2β0σ̂1 + 2β11 = 0 → β0 = β1 = 0, (16a)
[B, σ̂2] = 2β0σ̂2 + 2β21 = 0 → β0 = β2 = 0, (16b)
[B, σ̂3] = 2β0σ̂3 + 2β31 = 0 → β0 = β3 = 0. (16c)

1Since the Pauli matrices are orthogonal to each-other, there exists no C-number α such
that ασi = σj .
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Therefore only the null matrix anti-commutes with all three Pauli matrices and,
as a result, finding four anti-commuting 2× 2 matrices is impossible.

3 (help with TEXing from Andreas Liapis)

3.1

We wish to obtain plane wave solutions to the Dirac equation with an arbitrary
wavevector; We begin with the Dirac equation in the coordinate representation,

(i∂/−m) Ψ = 0, (17)

for which we postulate solutions of the form

Ψ(x) = u(k)e−k·x. (18)

The eigenvalues of (17) are obtained from:

det(γ0k0 − γiki −m) = 0 ⇒ k0 = ±
√

k2 + m2 = ω± (19)

where

γ0 =
(

1 0
0 −1

)
; γ =

(
0 σ
−σ 0

)
. (20)

Note that

γ · k =
(

0 σ · k
−σ · k 0

)
. (21)

The amplitude of the plane wave must obey

(k/−m) u(k) = 0. (22)

We can write equation (22) as(
1(k0 −m) −σ · k

σ · k −1(k0 + m)

)
u(k) = 0. (23)

We now express the four-component vector u(k) as a pair of two-component
vectors ũ and ṽ.

u(k) =
(

ũ(k)
ṽ(k)

)
(24)

Equation (23) is then reduced to a pair of equations relating these two-component
vectors. If we choose the positive energy solution k0 = ω+, we find(

1(ω+ −m) −σ · k
σ · k −1(ω+ + m)

) (
ũ(k)
ṽ(k)

)
= 0. (25)

In this case, ũ is the independent quantity, so we wish to solve for ṽ. From the
second equation, we find that

ṽ(k) =
σ · k

ω+ + m
ũ(k) =

σ · k
ω + m

ũ(k). (26)
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Similarly, if we chose the negative energy solution, k0 = ω− we would find(
1(ω− −m) −σ · k

σ · k −1(ω− + m)

) (
ũ(k)
ṽ(k)

)
= 0. (27)

This time, it is ṽ that is the independent quantity, and solving the first equation
gives:

ũ(k) =
σ · k

ω− −m
ṽ(k) = − σ · k

ω + m
ṽ(k). (28)

3.2

We wish to confirm that the states obtained above are eigenstates of the Hamil-
tonian

H = α · p + βm. (29)

Consider the positive energy solution first.

HΨ = α · i
−→
∇Ψ + βmΨ (30a)

=
(

0 σ
−σ 0

)
· i(ik)Ψ +

(
m1 0
0 −m1

)
Ψ (30b)

=
(

m1 −σ · k
σ · k −m1

)
Ψ (30c)

=
(

m1 −σ · k
σ · k −m1

) (
ũ

ũ σ·k
ω+m

)
eik·x (30d)

=
(

m1− σ · k σ·k
ω+m

σ · k−m σ·k
ω+m

)
ũeik·x (30e)

=
(

m1− k2 1
ω+m

σ · k(1−m 1
ω+m )

)
ũeik·x (30f)

=
(

1ω
σ·k
ω+mω

)
ũeik·x (30g)

= ω

(
ũ

ũ σ·k
ω+m

)
eik·x (30h)

Here we have made use of the fact that k2 = ω2 −m2 as well as the identity2

(σ · k)2 = k2 + iσ · (k × k) = k2. We see that Ψ+ is indeed an eigenstate of
H with eigenvalue ω. For the negative energy solution we start from equation
(30c):

HΨ =
(

m1 −σ · k
σ · k −m1

) (
− σ·k

ω+m ṽ

ṽ

)
eik·x (31a)

=
(
−m σ·k

ω+m − σ · k
σ · k σ·k

ω+m −m1

)
ṽeik·x (31b)

=
(
−m σ·k

ω+m − σ · k
k2 1

ω+m −m1

)
ṽeik·x (31c)

= −ω

(
− σ·k

ω+m ṽ

ṽ

)
eik·x (31d)

2This can easily be derived from the commutation relation of the Pauli matrices: σ̂iσ̂j =
1δij + εijkiσ̂k
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We therefore confirm that Ψ− is an eigenstate of H with eigenvalue −ω.
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