Relativistic Quantum Mechanics Homework 6 (solution)

December 4, 2007

1

1.1

$$
\begin{gather*}
u^{\prime}\left(p^{\prime}\right)=\operatorname{Su}(p), \quad S=\cosh \frac{\omega}{2}-\alpha_{3} \sinh \frac{\omega}{2} \tag{1}\\
\alpha_{3}=\left(\begin{array}{cc}
0 & \sigma_{3} \\
\sigma_{3} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{2}\\
\operatorname{Su}(p)= \\
=\left(\begin{array}{ccc}
\cosh \frac{\omega}{2} & 0 & -\sinh \frac{\omega}{2} \\
0 & 0 \\
-\sinh \frac{\omega}{2} & 0 & \cosh \frac{\omega}{2} \\
0 & \cosh \frac{\omega}{2} & 0 \\
\sinh \frac{\omega}{2} & 0 & \cosh \frac{\omega}{2}
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \tag{3}\\
=\left(\begin{array}{c}
\cosh \frac{\omega}{2} \\
0 \\
-\sinh \frac{\omega}{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
\sqrt{\frac{\gamma+1}{2}} \\
0 \\
-\sqrt{\frac{\gamma-1}{2}} \\
0
\end{array}\right)
\end{gather*}
$$

where

$$
\cosh \omega=\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

1.2

Symmetries of $p^{\mu}=(p, 0,0, p)$ commute with $P_{0}-P_{3}$.

$$
\begin{gather*}
{\left[P_{0}-P_{3}, M_{12}\right]=0} \tag{4}\\
{\left[P_{0}-P_{3}, \Pi_{1}\right]=\left[P_{0}-P_{3}, M_{01}-M_{13}\right]=0} \tag{5}\\
{\left[P_{0}-P_{3}, \Pi_{2}\right]=\left[P_{0}-P_{3}, M_{02}-M_{23}\right]=0} \tag{6}
\end{gather*}
$$

A rotation on the x-y plane around z-axis leaves $p^{\mu}=(p, 0,0, p)$ invariant (eq. 4 .

$$
M_{12}= \pm J_{3}, \quad \Lambda_{\nu}^{\mu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{7}\\
0 & \cos \alpha & \sin \alpha & 0 \\
0 & -\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Also,

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}=e^{-\alpha\left(M_{01}-M_{13}\right)}=e^{-\alpha M_{01}} e^{\alpha M_{13}} e^{\frac{\alpha^{2}}{2}\left[M_{01}, M_{13}\right]} \tag{8}
\end{equation*}
$$

or

$$
\begin{aligned}
& \Lambda^{\mu}{ }_{\nu}=e^{-\alpha M_{01}} e^{\alpha M_{13}} e^{-\frac{\alpha^{2}}{2} M_{03}}= \\
& =\left(\begin{array}{cccc}
\cosh \alpha & -\sinh \alpha & 0 & 0 \\
-\sinh \alpha & \cosh \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & 0 & \sin \alpha \\
0 & 0 & 1 & 0 \\
0 & -\sin \alpha & 0 & \cos \alpha
\end{array}\right)\left(\begin{array}{cccc}
\cosh \frac{\alpha^{2}}{2} & 0 & 0 & -\sinh \frac{\alpha^{2}}{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sinh \frac{\alpha^{2}}{2} & 0 & 0 & \cosh \frac{\alpha^{2}}{2}
\end{array}\right)
\end{aligned}
$$

(first boost along z -axis, then rotation about y -axis, then boost along x -axis)
Similarly,

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}=e^{-\alpha\left(M_{02}-M_{23}\right)}=e^{-\alpha M_{02}} e^{\alpha M_{23}} e^{\frac{\alpha^{2}}{2}\left[M_{02}, M_{23}\right]} \tag{9}
\end{equation*}
$$

or

$$
\begin{aligned}
& \Lambda^{\mu}{ }_{\nu}=e^{-\alpha M_{02}} e^{\alpha M_{23}} e^{-\frac{\alpha^{2}}{2} M_{03}}= \\
& =\left(\begin{array}{cccc}
\cosh \alpha & 0 & -\sinh \alpha & 0 \\
0 & 1 & 0 & 0 \\
-\sinh \alpha & 0 & \cosh \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \alpha & \sin \alpha \\
0 & 0 & -\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cccc}
\cosh \frac{\alpha^{2}}{2} & 0 & 0 & -\sinh \frac{\alpha^{2}}{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sinh \frac{\alpha^{2}}{2} & 0 & 0 & \cosh \frac{\alpha^{2}}{2}
\end{array}\right)
\end{aligned}
$$

(first boost along z-axis, then rotation about x -axis, then boost along y -axis)

2

In $2+1 \mathrm{D}$ we have

$$
\begin{equation*}
x^{\mu}=\left(t, x^{1}, x^{2}\right), \quad \eta_{\mu \nu}=\operatorname{diag}(1,-1,-1) \tag{10}
\end{equation*}
$$

and an infinitesimal transformation δx^{μ} (translations along all axes, boosts along x^{1}, x^{2} and a rotation in the $x^{1}-x^{2}$ plane)

$$
\begin{equation*}
\delta x^{\mu}=\epsilon^{\mu}+\omega_{\nu}^{\mu} x^{\nu} \tag{11}
\end{equation*}
$$

The associated vector field is

$$
\begin{equation*}
\hat{R}(\epsilon, \omega)=-\left(\epsilon^{\mu} \partial_{\mu}+\omega^{\mu \nu} x_{\nu} \partial_{\mu}\right) \tag{12}
\end{equation*}
$$

There are 6 independent generators; 3 translations $\left(p_{\mu}\right), 2$ boosts $\left(M_{0 i}\right)$ and 1 rotation $\left(M_{12}\right)$ with commutation relations

$$
\begin{gather*}
{\left[p_{\mu}, M_{\nu \sigma}\right]=\eta_{\mu \nu} p_{\sigma}-\eta_{\mu \sigma} p_{\mu}} \tag{13}\\
{\left[p_{\mu}, p_{\nu}\right]=0} \tag{14}
\end{gather*}
$$

$p^{2}=\eta^{\mu \nu} p_{\mu} p_{n} u$ is the Casimir of the group

$$
\begin{gather*}
{\left[p^{2}, p_{\mu}\right]=0} \tag{15}\\
{\left[p^{2}, M_{\mu \nu}\right]=0} \tag{16}
\end{gather*}
$$

3

3.1

The Lagrangian of a free relativistic point particle of mass m is

$$
\begin{equation*}
L=-\frac{m}{\gamma} \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma & =\left(1-v^{2}\right)^{-1 / 2} \\
p & =\frac{\partial L}{\dot{x}}=\frac{m \dot{x}}{\gamma} \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial p}{\partial t}-\frac{\partial L}{\partial x}=0 \Rightarrow \frac{m}{\gamma} \ddot{x}=0 \tag{19}
\end{equation*}
$$

3.2

not graded
A massless particle has a constant velocity c (or momentum $p=1 / \lambda$) and the Lagrangian would be a constant since its motion is simply a straight line. A massless field instead can be described by

$$
\begin{equation*}
L=-\frac{1}{16} F_{\alpha \beta} F^{\alpha \beta} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial L}{\partial \phi}=\partial^{\mu} \frac{\partial L}{\partial\left(\partial^{\mu} \phi\right)} \tag{21}
\end{equation*}
$$

3.3

not graded

$$
\begin{equation*}
H=p \dot{x}-L=\gamma m, \quad \frac{d \dot{x}}{d t}=-i[\dot{x}, H]=0=\ddot{x} \tag{22}
\end{equation*}
$$

