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Since the early 70’s, several groups have tried to measure the time-correlation of downcon-

verted photons. Hong, Ou and Mandel (HOM) showed that two photon interference gave an

indirect method for measuring the correlations. However, the HOM method is a local mea-

surement, because it requires both photons of the pair to be present at the same space-time

location. Here, it will be shown that fourth order interference in a Franson interferometer

can also be used to determine the time-time correlations of parametric downconversion. In

contrast to the HOM interference, Franson interference can performed with the two photons

of the pair at two space-like separated locations.

A simplified longitudinal wavefunction, which neglects transverse fields and polarization

is given by

|Ψ0〉 =

∫ ∫

dtdtA(t1, t2)a
†
1(t)a

†
3(t)|0〉 (1)

where A(t, t′) is the nonseparable temporal amplitude correlation function, a†
1(t)a

†
2(t

′) are

photon creation operators for modes 1 and 2 respectively and |0〉 is the vacuum state.

The photons from the EPR source are then each sent to imbalanced Mach-Zehnder in-

terferometers as shown in Fig. 1. The imbalanced interferometers are designed such that

there is no single-photon interference. Typically, only 100 micron imbalances are needed to

insure this. There are also two more constraints. In order to see the fourth order tempo-

ral interference, the imbalance must be long enough so that it is possible to postselect out

events in photon 1 took the short path and photon 2 took the long path and vice versa.

These measurement outcomes are rejected. This latter requirement necessitates the imbal-

ance to be larger than the detector response time, which is on the order of 300 ps. The last

constraint is that the imbalance must be shorter than the pump coherence time, which in

our experiment is approximately 1 µs. Typically, the imbalance is approximately 2 to 3 ns,

which satisfies all the constraints.
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Now consider the evolution of the two-photon wavepacket through the Franson inter-

ferometer. The beamsplitters, which will be assumed to be 50/50 beamsplitters, have the

matrix form

B =
1√
2





1 i

i 1



 . (2)

The field operators at the detectors, after passing through the interferometer, are given by

(it is assumed that the trasmitted mode through the beam splitter preserves the mode)

a†
1(t) →

1

2
(a†

1(t − τ1) − eiφ12a†
1(t − τ2)) (3)

and

a†
3(t

′) → 1

2
(a†

3(t
′ − τ3) − eiφ34a†

3(t
′ − τ4)) (4)

where the τi are the relative times of the amplitudes to arrive at the detectors and the phase

factors φ12, φ34 are the relative phases picked up in the lower and upper interferometers

respectively. It should be noted that field amplitudes are also in the other outputs of

the interferometers, but we are only interested in the fields at detectors 1 and 3. The

wavefunction is then given by

|Ψ1〉 =
1

4

∫ ∫

dt1dt′1A(t, t′)(a†
1(t− τ1)− eiφ12a†

1(t− τ2))(a
†
3(t

′ − τ3)− eiφ34a†
3(t

′ − τ4))|0〉 (5)

As stated earlier, the long short and short long coincidences are filtered out using postselec-

tion of events. Thus, the two-photon events in which one photon propagated along path 1

and the other photon propagated along path 4 or the events along paths 2 and 3 are filtered

out. The wavefunction can then be further simplified

|Ψ2〉 =
1

4

∫ ∫

dt1dt′1A(t, t′)(a†
1(t − τ1)a

†
3(t

′ − τ3) + ei(φ12+φ34)a†
1(t − τ2)a

†
3(t

′ − τ4)|0〉 (6)

The physical intuition behind this wavefunction can be understood in terms of fourth order

quantum interference. Essentially, this wavefunction states that there is interference be-

tween the two amplitudes that travel along the short paths of the interferometer with the

amplitudes that travel along the long paths of the interferometer. Since the pump coher-

ence length is much longer than the imbalance in the interferometers, the pump photon is

destroyed at an infinite number of different space-time points and two of those events can

be made indistinguishable in the interferometer.
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The fourth order coherence between the two detectors can be mathematically represented

by

P1,3 ∝ 〈Ψ2|a†
1(t1)a

†
2(t1 − τ)a2(t1 − τ)a1(t1)|Ψ2〉 (7)

where the narrow bandwidth approximation has been assumed (i.e., the bandwidth of the

downconversion is much smaller than the radial frequency of the light). An observation of

this coherence function shows that there are four terms of eight operators. The effort is to

remove the operators from the function by normally ordering the operators. When normally

ordered a|0〉 = 0 which means that the operators can be removed from the calculation. The

ordering is achieved using the equal time boson commutator relation [a(t), a†(t′)] = δ(t− t′).

After a somewhat lengthy, but straightforward calculation, the fourth order coherence is

found to be

P1,3 ∝ |A(τ1 − τ3 − τ)|2 + |A(τ2 − τ4 − τ)|2 + (8)

+ ei(φ12+φ34)A∗(τ1 − τ3 − τ)A(τ2 − τ4 − τ) + e−i(φ12+φ34)A∗(τ2 − τ4 − τ)A(τ1 − τ3 − τ)

Now, we integrate over the detector response time τ . Since the detector response time is

typically much larger than the correlation time, the limits of integration can be assumed

to be taken over all time. Also, without loss of generality, but in an effort to simplify the

mathematics as well as the physics, we define two relative time widths. The first time width

∆τ = (τ1−τ3)+(τ2−τ4)
2

and δτ = (τ1−τ3)−(τ2−τ4)
2

. Lastly, we will assume that the correlation

function is real. Making these assumptions, the two-photon detection rate is then

R1,3 ∝ 1 + cos φ

(
∫

dτA(∆τ − τ − δτ)A(∆τ − τ + δτ)
∫

dτ |A(∆τ − τ)|2
)

(9)

where φ = φ12 +φ34. This rate function is identical to the HOM fourth order cross coherence

function with the exception of the cos φ term. Thus, the two-photon envelope function of the

Franson interferometer can be used just as the HOM interference pattern, to determine the

relative time-time correlations of the photons from downconversion even though the detector

response times are several orders of magnitude less sensitive to time measurements.

The rate equation in eqn. 9 is a general statement about the relative time correla-

tions of photon emissions. For downconversion, the temporal correlation function is primar-

ily attributed to the gaussian spectral passbands of interference filters. We therefore find

A(t, t′) = e−(t−t′)2∆2/2, where ∆ is the spectral bandwidth of the filters. The rate equation
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FIG. 1: Fig 1. A Franson interferometer. Two photons travel in opposite directions from an EPR

source. Each photon then enters an imbalanced Mach-Zehnder interferometer, such that there is

no single photon interference. The temporal pathlengths through the arms of the interferometers

are denoted τi. Detectors in paths 1 and 3 measure the outputs of the interferometers and the

coincidences between the detectors are recorded.

is then simplified:

R1,3 = 1 + cos φe−δτ2∆2

. (10)

Hence, when δτ = 0 or in other words, the difference in path lengths of the two Mach-Zehnder

interferometers is the same, 100% visibility fringes will result as has been demonstrated in

numerous experiments. When δτ >> 1/∆ there will be no fringes. It should be noted

that this function is identical to the HOM degree of second order coherence with only the

addition of the cos φ term. Thus, instead of the “HOM dip”, there is a “Franson” envelope.
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